Publikation:

The impact of biostatistics on hazard characterization using in vitro developmental neurotoxicity assays

Lade...
Vorschaubild

Dateien

Kessel_2-16pwo44prnwsq1.pdf
Kessel_2-16pwo44prnwsq1.pdfGröße: 4.66 MBDownloads: 9

Datum

2023

Autor:innen

Keßel, Hagen Eike
Masjosthusmann, Stefan
Bartmann, Kristina
Dönmez, Arif
Förster, Nils
Klose, Jördis
Scholze, Martin
Fritsche, Ellen
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ALTEX. Springer. 2023, 40(4), S. 619-634. eISSN 1868-596X. Verfügbar unter: doi: 10.14573/altex.2210171

Zusammenfassung

In chemical safety assessment, benchmark concentrations (BMC) and their associated uncertainty are needed for the toxicological evaluation of in vitro data sets. A BMC estimation is derived from concentration-response modelling and results from various statistical decisions, which depend on factors such as experimental design and assay endpoint features. In current data practice, the experimenter is often responsible for the data analysis and therefore relies on statistical software often without being aware of the software default settings and how they can impact the outputs of data analysis. To provide more insight into how statistical decision-making can influence the outcomes of data analysis and interpretation, we have developed an automatic platform that includes statistical methods for BMC estimation, a novel endpoint-specific hazard classification system, and routines that flag data sets that are outside the applicability domain for an automatic data evaluation. We used case studies on a large dataset produced by a developmental neurotoxicity (DNT) in vitro battery (DNT IVB). Here we focused on the BMC and its confidence interval (CI) estimation as well as on final hazard classification. We identified five crucial statistical decisions the experimenter must make during data analysis: choice of replicate averaging, response data normalization, regression modelling, BMC and CI estimation, and choice of benchmark response levels. The insights gained in are intended to raise more awareness among experimenters on the importance of statistical decisions and methods but also to demonstrate how important fit-for-purpose, internationally harmonized and accepted data evaluation and analysis procedures are for objective hazard classification.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KESSEL, Hagen Eike, Stefan MASJOSTHUSMANN, Kristina BARTMANN, Jonathan BLUM, Arif DÖNMEZ, Nils FÖRSTER, Jördis KLOSE, Marcel LEIST, Martin SCHOLZE, Ellen FRITSCHE, 2023. The impact of biostatistics on hazard characterization using in vitro developmental neurotoxicity assays. In: ALTEX. Springer. 2023, 40(4), S. 619-634. eISSN 1868-596X. Verfügbar unter: doi: 10.14573/altex.2210171
BibTex
@article{Keel2023impac-67530,
  year={2023},
  doi={10.14573/altex.2210171},
  title={The impact of biostatistics on hazard characterization using in vitro developmental neurotoxicity assays},
  number={4},
  volume={40},
  journal={ALTEX},
  pages={619--634},
  author={Keßel, Hagen Eike and Masjosthusmann, Stefan and Bartmann, Kristina and Blum, Jonathan and Dönmez, Arif and Förster, Nils and Klose, Jördis and Leist, Marcel and Scholze, Martin and Fritsche, Ellen},
  note={Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 417677437/GRK2578}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67530">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Masjosthusmann, Stefan</dc:creator>
    <dc:creator>Förster, Nils</dc:creator>
    <dc:creator>Scholze, Martin</dc:creator>
    <dcterms:issued>2023</dcterms:issued>
    <dcterms:abstract>In chemical safety assessment, benchmark concentrations (BMC) and their associated uncertainty are needed for the toxicological evaluation of in vitro data sets. A BMC estimation is derived from concentration-response modelling and results from various statistical decisions, which depend on factors such as experimental design and assay endpoint features. In current data practice, the experimenter is often responsible for the data analysis and therefore relies on statistical software often without being aware of the software default settings and how they can impact the outputs of data analysis. To provide more insight into how statistical decision-making can influence the outcomes of data analysis and interpretation, we have developed an automatic platform that includes statistical methods for BMC estimation, a novel endpoint-specific hazard classification system, and routines that flag data sets that are outside the applicability domain for an automatic data evaluation. We used case studies on a large dataset produced by a developmental neurotoxicity (DNT) in vitro battery (DNT IVB). Here we focused on the BMC and its confidence interval (CI) estimation as well as on final hazard classification. We identified five crucial statistical decisions the experimenter must make during data analysis: choice of replicate averaging, response data normalization, regression modelling, BMC and CI estimation, and choice of benchmark response levels. The insights gained in are intended to raise more awareness among experimenters on the importance of statistical decisions and methods but also to demonstrate how important fit-for-purpose, internationally harmonized and accepted data evaluation and analysis procedures are for objective hazard classification.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Blum, Jonathan</dc:creator>
    <dc:creator>Klose, Jördis</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Fritsche, Ellen</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Keßel, Hagen Eike</dc:contributor>
    <dc:contributor>Scholze, Martin</dc:contributor>
    <dc:creator>Dönmez, Arif</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-08T10:55:36Z</dc:date>
    <dc:contributor>Dönmez, Arif</dc:contributor>
    <dc:creator>Bartmann, Kristina</dc:creator>
    <dc:contributor>Klose, Jördis</dc:contributor>
    <dc:creator>Leist, Marcel</dc:creator>
    <dc:contributor>Blum, Jonathan</dc:contributor>
    <dcterms:title>The impact of biostatistics on hazard characterization using in vitro developmental neurotoxicity assays</dcterms:title>
    <dc:contributor>Leist, Marcel</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67530/1/Kessel_2-16pwo44prnwsq1.pdf"/>
    <dc:contributor>Masjosthusmann, Stefan</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67530"/>
    <dc:contributor>Förster, Nils</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-08T10:55:36Z</dcterms:available>
    <dc:contributor>Fritsche, Ellen</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67530/1/Kessel_2-16pwo44prnwsq1.pdf"/>
    <dc:creator>Keßel, Hagen Eike</dc:creator>
    <dc:contributor>Bartmann, Kristina</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 417677437/GRK2578
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen