Publikation:

An algebraic perspective on multivariate tight wavelet frames : II

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

Charina, Maria
Putinar, Mihai
Stöckler, Joachim

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Applied and Computational Harmonic Analysis. 2015, 39(2), pp. 185-213. ISSN 1063-5203. eISSN 1096-603X. Available under: doi: 10.1016/j.acha.2014.09.003

Zusammenfassung

Continuing our recent work in [5] we study polynomial masks of multivariate tight wavelet frames from two additional and complementary points of view: convexity and system theory. We consider such polynomial masks that are derived by means of the unitary extension principle from a single polynomial. We show that the set of such polynomials is convex and reveal its extremal points as polynomials that satisfy the quadrature mirror filter condition. Multiplicative structure of this polynomial set allows us to improve the known upper bounds on the number of frame generators derived from box splines. Moreover, in the univariate and bivariate settings, the polynomial masks of a tight wavelet frame can be interpreted as the transfer function of a conservative multivariate linear system. Recent advances in system theory enable us to develop a more effective method for tight frame constructions. Employing an example by S.W. Drury, we show that for dimension greater than 2 such transfer function representations of the corresponding polynomial masks do not always exist. However, for all wavelet masks derived from multivariate polynomials with non-negative coefficients, we determine explicit transfer function representations. We illustrate our results with several examples.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Multivariate wavelet frame, Positive polynomial, Sum of hermitian squares, Transfer function

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CHARINA, Maria, Mihai PUTINAR, Claus SCHEIDERER, Joachim STÖCKLER, 2015. An algebraic perspective on multivariate tight wavelet frames : II. In: Applied and Computational Harmonic Analysis. 2015, 39(2), pp. 185-213. ISSN 1063-5203. eISSN 1096-603X. Available under: doi: 10.1016/j.acha.2014.09.003
BibTex
@article{Charina2015algeb-31753,
  year={2015},
  doi={10.1016/j.acha.2014.09.003},
  title={An algebraic perspective on multivariate tight wavelet frames : II},
  number={2},
  volume={39},
  issn={1063-5203},
  journal={Applied and Computational Harmonic Analysis},
  pages={185--213},
  author={Charina, Maria and Putinar, Mihai and Scheiderer, Claus and Stöckler, Joachim}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31753">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Charina, Maria</dc:contributor>
    <dc:contributor>Putinar, Mihai</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31753"/>
    <dc:contributor>Stöckler, Joachim</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Scheiderer, Claus</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-15T09:34:16Z</dcterms:available>
    <dc:creator>Putinar, Mihai</dc:creator>
    <dcterms:issued>2015</dcterms:issued>
    <dcterms:title>An algebraic perspective on multivariate tight wavelet frames : II</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-15T09:34:16Z</dc:date>
    <dc:language>eng</dc:language>
    <dc:contributor>Scheiderer, Claus</dc:contributor>
    <dc:creator>Charina, Maria</dc:creator>
    <dcterms:abstract xml:lang="eng">Continuing our recent work in [5] we study polynomial masks of multivariate tight wavelet frames from two additional and complementary points of view: convexity and system theory. We consider such polynomial masks that are derived by means of the unitary extension principle from a single polynomial. We show that the set of such polynomials is convex and reveal its extremal points as polynomials that satisfy the quadrature mirror filter condition. Multiplicative structure of this polynomial set allows us to improve the known upper bounds on the number of frame generators derived from box splines. Moreover, in the univariate and bivariate settings, the polynomial masks of a tight wavelet frame can be interpreted as the transfer function of a conservative multivariate linear system. Recent advances in system theory enable us to develop a more effective method for tight frame constructions. Employing an example by S.W. Drury, we show that for dimension greater than 2 such transfer function representations of the corresponding polynomial masks do not always exist. However, for all wavelet masks derived from multivariate polynomials with non-negative coefficients, we determine explicit transfer function representations. We illustrate our results with several examples.</dcterms:abstract>
    <dc:creator>Stöckler, Joachim</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen