Publikation: An algebraic perspective on multivariate tight wavelet frames : II
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Continuing our recent work in [5] we study polynomial masks of multivariate tight wavelet frames from two additional and complementary points of view: convexity and system theory. We consider such polynomial masks that are derived by means of the unitary extension principle from a single polynomial. We show that the set of such polynomials is convex and reveal its extremal points as polynomials that satisfy the quadrature mirror filter condition. Multiplicative structure of this polynomial set allows us to improve the known upper bounds on the number of frame generators derived from box splines. Moreover, in the univariate and bivariate settings, the polynomial masks of a tight wavelet frame can be interpreted as the transfer function of a conservative multivariate linear system. Recent advances in system theory enable us to develop a more effective method for tight frame constructions. Employing an example by S.W. Drury, we show that for dimension greater than 2 such transfer function representations of the corresponding polynomial masks do not always exist. However, for all wavelet masks derived from multivariate polynomials with non-negative coefficients, we determine explicit transfer function representations. We illustrate our results with several examples.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CHARINA, Maria, Mihai PUTINAR, Claus SCHEIDERER, Joachim STÖCKLER, 2015. An algebraic perspective on multivariate tight wavelet frames : II. In: Applied and Computational Harmonic Analysis. 2015, 39(2), pp. 185-213. ISSN 1063-5203. eISSN 1096-603X. Available under: doi: 10.1016/j.acha.2014.09.003BibTex
@article{Charina2015algeb-31753, year={2015}, doi={10.1016/j.acha.2014.09.003}, title={An algebraic perspective on multivariate tight wavelet frames : II}, number={2}, volume={39}, issn={1063-5203}, journal={Applied and Computational Harmonic Analysis}, pages={185--213}, author={Charina, Maria and Putinar, Mihai and Scheiderer, Claus and Stöckler, Joachim} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31753"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Charina, Maria</dc:contributor> <dc:contributor>Putinar, Mihai</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31753"/> <dc:contributor>Stöckler, Joachim</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Scheiderer, Claus</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-15T09:34:16Z</dcterms:available> <dc:creator>Putinar, Mihai</dc:creator> <dcterms:issued>2015</dcterms:issued> <dcterms:title>An algebraic perspective on multivariate tight wavelet frames : II</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-15T09:34:16Z</dc:date> <dc:language>eng</dc:language> <dc:contributor>Scheiderer, Claus</dc:contributor> <dc:creator>Charina, Maria</dc:creator> <dcterms:abstract xml:lang="eng">Continuing our recent work in [5] we study polynomial masks of multivariate tight wavelet frames from two additional and complementary points of view: convexity and system theory. We consider such polynomial masks that are derived by means of the unitary extension principle from a single polynomial. We show that the set of such polynomials is convex and reveal its extremal points as polynomials that satisfy the quadrature mirror filter condition. Multiplicative structure of this polynomial set allows us to improve the known upper bounds on the number of frame generators derived from box splines. Moreover, in the univariate and bivariate settings, the polynomial masks of a tight wavelet frame can be interpreted as the transfer function of a conservative multivariate linear system. Recent advances in system theory enable us to develop a more effective method for tight frame constructions. Employing an example by S.W. Drury, we show that for dimension greater than 2 such transfer function representations of the corresponding polynomial masks do not always exist. However, for all wavelet masks derived from multivariate polynomials with non-negative coefficients, we determine explicit transfer function representations. We illustrate our results with several examples.</dcterms:abstract> <dc:creator>Stöckler, Joachim</dc:creator> </rdf:Description> </rdf:RDF>