Publikation:

Landscape-level validation of allometric relationships for carbon stock estimation reveals bias driven by soil type

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Beirne, Christopher
Miao, Zewei
Medjibe, Vincent P.
Saatchi, Sassan
White, Lee J. T.
Poulsen, John R.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Ecological Applications. Ecological Society of America (ESA). 2019, 29(8), e01987. ISSN 1051-0761. eISSN 1939-5582. Available under: doi: 10.1002/eap.1987

Zusammenfassung

Mitigation of climate change depends on accurate estimation and mapping of terrestrial carbon stocks, particularly in carbon dense tropical forests. Allometric equations can be used to robustly estimate biomass of tropical trees, but often require tree height, which is frequently unknown. Researchers and practitioners must, therefore, decide whether to directly measure a subset of tree heights to develop diameter : height (D:H) equations or rely on previously published generic equations. To date, studies comparing the two approaches have been spatially restricted and/or not randomly allocated across the landscape of interest, making the implications of deciding whether or not to measure tree heights difficult to determine. To address this issue, we use inventory data from a systematic-random forest inventory across Gabon (102 forest sites; 42,627 trees, including 7,036 height-measured trees). Using plot-specific models of D:H as a benchmark, we compare the performance of a suite of locally fitted and commonly used generic models (parameterized national, georegional, and pantropical equations) across a variety of scales, and assess which abiotic, anthropogenic, and topographical covariates contribute the most to bias in height estimation. We reveal marked spatial structure in the magnitude and direction of bias in tree height estimation using all generic models, due at least in part to soil type, which compounded to substantial error in site-level AGB estimates (of up to 38% or 150 Mg/ha). However, two generic pantropical models (Chave 2014; Feldpausch 2012) converged to within 2.5% of mean AGB at the landscape scale. Our results suggest that some (not all) pantropical equations can extrapolate AGB across large spatial scales with minimal bias in estimated mean AGB. However, extreme caution must be taken when interpreting the AGB estimates from generic models at the site-level as they fail to capture substantial spatial variation in D:H relationships, which could lead to dramatic under- or over-estimation of site-level carbon stocks. Validated allometric models derived at site- or soil-type-levels may be the best way to reduce such biases arising from landscape-level heterogeneity in D:H model fit in the Afrotropics.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

aboveground biomass, allometric equation, carbon stocks, central African rainforest, Michaelis‐Menten model, Weibull model

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BEIRNE, Christopher, Zewei MIAO, Chase L. NUNEZ, Vincent P. MEDJIBE, Sassan SAATCHI, Lee J. T. WHITE, John R. POULSEN, 2019. Landscape-level validation of allometric relationships for carbon stock estimation reveals bias driven by soil type. In: Ecological Applications. Ecological Society of America (ESA). 2019, 29(8), e01987. ISSN 1051-0761. eISSN 1939-5582. Available under: doi: 10.1002/eap.1987
BibTex
@article{Beirne2019Lands-51889,
  year={2019},
  doi={10.1002/eap.1987},
  title={Landscape-level validation of allometric relationships for carbon stock estimation reveals bias driven by soil type},
  number={8},
  volume={29},
  issn={1051-0761},
  journal={Ecological Applications},
  author={Beirne, Christopher and Miao, Zewei and Nunez, Chase L. and Medjibe, Vincent P. and Saatchi, Sassan and White, Lee J. T. and Poulsen, John R.},
  note={Article Number: e01987}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51889">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-19T14:00:26Z</dc:date>
    <dc:contributor>White, Lee J. T.</dc:contributor>
    <dcterms:title>Landscape-level validation of allometric relationships for carbon stock estimation reveals bias driven by soil type</dcterms:title>
    <dc:creator>Nunez, Chase L.</dc:creator>
    <dc:contributor>Poulsen, John R.</dc:contributor>
    <dc:contributor>Nunez, Chase L.</dc:contributor>
    <dc:creator>Miao, Zewei</dc:creator>
    <dcterms:abstract xml:lang="eng">Mitigation of climate change depends on accurate estimation and mapping of terrestrial carbon stocks, particularly in carbon dense tropical forests. Allometric equations can be used to robustly estimate biomass of tropical trees, but often require tree height, which is frequently unknown. Researchers and practitioners must, therefore, decide whether to directly measure a subset of tree heights to develop diameter : height (D:H) equations or rely on previously published generic equations. To date, studies comparing the two approaches have been spatially restricted and/or not randomly allocated across the landscape of interest, making the implications of deciding whether or not to measure tree heights difficult to determine. To address this issue, we use inventory data from a systematic-random forest inventory across Gabon (102 forest sites; 42,627 trees, including 7,036 height-measured trees). Using plot-specific models of D:H as a benchmark, we compare the performance of a suite of locally fitted and commonly used generic models (parameterized national, georegional, and pantropical equations) across a variety of scales, and assess which abiotic, anthropogenic, and topographical covariates contribute the most to bias in height estimation. We reveal marked spatial structure in the magnitude and direction of bias in tree height estimation using all generic models, due at least in part to soil type, which compounded to substantial error in site-level AGB estimates (of up to 38% or 150 Mg/ha). However, two generic pantropical models (Chave 2014; Feldpausch 2012) converged to within 2.5% of mean AGB at the landscape scale. Our results suggest that some (not all) pantropical equations can extrapolate AGB across large spatial scales with minimal bias in estimated mean AGB. However, extreme caution must be taken when interpreting the AGB estimates from generic models at the site-level as they fail to capture substantial spatial variation in D:H relationships, which could lead to dramatic under- or over-estimation of site-level carbon stocks. Validated allometric models derived at site- or soil-type-levels may be the best way to reduce such biases arising from landscape-level heterogeneity in D:H model fit in the Afrotropics.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>White, Lee J. T.</dc:creator>
    <dc:contributor>Miao, Zewei</dc:contributor>
    <dc:creator>Beirne, Christopher</dc:creator>
    <dc:contributor>Beirne, Christopher</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51889"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Poulsen, John R.</dc:creator>
    <dcterms:issued>2019</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Medjibe, Vincent P.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Medjibe, Vincent P.</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Saatchi, Sassan</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-19T14:00:26Z</dcterms:available>
    <dc:creator>Saatchi, Sassan</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen