Publikation:

Auditing the representation of migrants in image web search results

Lade...
Vorschaubild

Dateien

Urman_2-153617vrb1wu81.pdf
Urman_2-153617vrb1wu81.pdfGröße: 1.93 MBDownloads: 22

Datum

2022

Autor:innen

Urman, Aleksandra
Makhortykh, Mykola

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Humanities and Social Sciences Communications. Springer. 2022, 9, 130. eISSN 2662-9992. Available under: doi: 10.1057/s41599-022-01144-1

Zusammenfassung

Search engines serve as information gatekeepers on a multitude of topics that are prone to gender, ethnicity, and race misrepresentations. In this paper, we specifically look at the image search representation of migrant population groups that are often subjected to discrimination and biased representation in mainstream media, increasingly so with the rise of right-wing populist actors in the Western countries. Using multiple ( n  = 200) virtual agents to simulate human browsing behavior in a controlled environment, we collect image search results related to various terms referring to migrants (e.g., expats, immigrants, and refugees, seven queries in English and German used in total) from the six most popular search engines. Then, with the aid of manual coding, we investigate which features are used to represent these groups and whether the representations are subjected to bias. Our findings indicate that search engines reproduce ethnic and gender biases common for mainstream media representations of different subgroups of migrant population. For instance, migrant representations tend to be highly racialized, and female migrants as well as migrants at work tend to be underrepresented in the results. Our findings highlight the need for further algorithmic impact auditing studies in the context of representation of potentially vulnerable groups in web search results.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690URMAN, Aleksandra, Mykola MAKHORTYKH, Roberto ULLOA, 2022. Auditing the representation of migrants in image web search results. In: Humanities and Social Sciences Communications. Springer. 2022, 9, 130. eISSN 2662-9992. Available under: doi: 10.1057/s41599-022-01144-1
BibTex
@article{Urman2022Audit-67824,
  year={2022},
  doi={10.1057/s41599-022-01144-1},
  title={Auditing the representation of migrants in image web search results},
  volume={9},
  journal={Humanities and Social Sciences Communications},
  author={Urman, Aleksandra and Makhortykh, Mykola and Ulloa, Roberto},
  note={Article Number: 130}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67824">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67824/1/Urman_2-153617vrb1wu81.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Auditing the representation of migrants in image web search results</dcterms:title>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:issued>2022</dcterms:issued>
    <dc:creator>Makhortykh, Mykola</dc:creator>
    <dcterms:abstract>Search engines serve as information gatekeepers on a multitude of topics that are prone to gender, ethnicity, and race misrepresentations. In this paper, we specifically look at the image search representation of migrant population groups that are often subjected to discrimination and biased representation in mainstream media, increasingly so with the rise of right-wing populist actors in the Western countries. Using multiple ( n  = 200) virtual agents to simulate human browsing behavior in a controlled environment, we collect image search results related to various terms referring to migrants (e.g., expats, immigrants, and refugees, seven queries in English and German used in total) from the six most popular search engines. Then, with the aid of manual coding, we investigate which features are used to represent these groups and whether the representations are subjected to bias. Our findings indicate that search engines reproduce ethnic and gender biases common for mainstream media representations of different subgroups of migrant population. For instance, migrant representations tend to be highly racialized, and female migrants as well as migrants at work tend to be underrepresented in the results. Our findings highlight the need for further algorithmic impact auditing studies in the context of representation of potentially vulnerable groups in web search results.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67824/1/Urman_2-153617vrb1wu81.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-19T08:54:44Z</dcterms:available>
    <dc:creator>Urman, Aleksandra</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67824"/>
    <dc:contributor>Urman, Aleksandra</dc:contributor>
    <dc:contributor>Ulloa, Roberto</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Ulloa, Roberto</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-19T08:54:44Z</dc:date>
    <dc:contributor>Makhortykh, Mykola</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen