Publikation: A new approach to Hilbert's theorem on ternary quartics
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Hilbert proved that a non-negative real quartic form f(x,y,z)f(x,y,z) is the sum of three squares of quadratic forms. We give a new proof which shows that if the plane curve Q defined by f is smooth, then f has exactly 8 such representations, up to equivalence. They correspond to those real 2-torsion points of the Jacobian of Q which are not represented by a conjugation-invariant divisor on Q.
Zusammenfassung in einer weiteren Sprache
Hilbert a démontré qu'une forme réelle non négative f(x,y,z)f(x,y,z) de degré 4 est la somme de trois carrés de formes quadratiques. Nous donnons une nouvelle démonstration qui montre que si la courbe plane Q definie par f est non singulière, alors f a exactement 8 telles représentations, à equivalence près. Elles correspondent aux points de 2- torsion du jacobien de Q qui ne sont pas représentés par un diviseur de Q invariant par conjugaison.
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
POWERS, Victoria, Bruce REZNICK, Claus SCHEIDERER, Frank SOTTILE, 2004. A new approach to Hilbert's theorem on ternary quartics. In: Comptes Rendus Mathematique. 2004, 339(9), pp. 617-620. ISSN 1631-073X. Available under: doi: 10.1016/j.crma.2004.09.014BibTex
@article{Powers2004appro-23506,
year={2004},
doi={10.1016/j.crma.2004.09.014},
title={A new approach to Hilbert's theorem on ternary quartics},
number={9},
volume={339},
issn={1631-073X},
journal={Comptes Rendus Mathematique},
pages={617--620},
author={Powers, Victoria and Reznick, Bruce and Scheiderer, Claus and Sottile, Frank}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23506">
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-04T10:16:11Z</dc:date>
<dc:language>eng</dc:language>
<dc:contributor>Powers, Victoria</dc:contributor>
<dcterms:title>A new approach to Hilbert's theorem on ternary quartics</dcterms:title>
<dc:creator>Scheiderer, Claus</dc:creator>
<dcterms:abstract xml:lang="eng">Hilbert proved that a non-negative real quartic form f(x,y,z)f(x,y,z) is the sum of three squares of quadratic forms. We give a new proof which shows that if the plane curve Q defined by f is smooth, then f has exactly 8 such representations, up to equivalence. They correspond to those real 2-torsion points of the Jacobian of Q which are not represented by a conjugation-invariant divisor on Q.</dcterms:abstract>
<dc:contributor>Sottile, Frank</dc:contributor>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
<dc:creator>Sottile, Frank</dc:creator>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-04T10:16:11Z</dcterms:available>
<dc:rights>terms-of-use</dc:rights>
<dc:contributor>Scheiderer, Claus</dc:contributor>
<dcterms:issued>2004</dcterms:issued>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dc:creator>Reznick, Bruce</dc:creator>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dc:contributor>Reznick, Bruce</dc:contributor>
<dcterms:bibliographicCitation>Comptes Rendus Mathematique ; 339 (2004), 9. - S. 617-620</dcterms:bibliographicCitation>
<bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23506"/>
<dcterms:alternative>Une nouvelle approche du théorème de Hilbert sur les quartiques ternaires</dcterms:alternative>
<dc:creator>Powers, Victoria</dc:creator>
</rdf:Description>
</rdf:RDF>