Publikation:

ThreadReconstructor : Modeling Reply-Chains to Untangle Conversational Text through Visual Analytics

Lade...
Vorschaubild

Dateien

El-Assady_2-14d2oh8nw56ia4.pdf
El-Assady_2-14d2oh8nw56ia4.pdfGröße: 544.08 KBDownloads: 1366

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computer Graphics Forum. 2018, 37(3), pp. 351-365. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.13425

Zusammenfassung

We present ThreadReconstructor, a visual analytics approach for detecting and analyzing the implicit conversational structure of discussions, e.g., in political debates and forums. Our work is motivated by the need to reveal and understand single threads in massive online conversations and verbatim text transcripts. We combine supervised and unsupervised machine learning models to generate a basic structure that is enriched by user‐defined queries and rule‐based heuristics. Depending on the data and tasks, users can modify and create various reconstruction models that are presented and compared in the visualization interface. Our tool enables the exploration of the generated threaded structures and the analysis of the untangled reply‐chains, comparing different models and their agreement. To understand the inner‐workings of the models, we visualize their decision spaces, including all considered candidate relations. In addition to a quantitative evaluation, we report qualitative feedback from an expert user study with four forum moderators and one machine learning expert, showing the effectiveness of our approach.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690EL-ASSADY, Mennatallah, Rita SEVASTJANOVA, Daniel A. KEIM, Christopher COLLINS, 2018. ThreadReconstructor : Modeling Reply-Chains to Untangle Conversational Text through Visual Analytics. In: Computer Graphics Forum. 2018, 37(3), pp. 351-365. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.13425
BibTex
@article{ElAssady2018-07-10Threa-42869,
  year={2018},
  doi={10.1111/cgf.13425},
  title={ThreadReconstructor : Modeling Reply-Chains to Untangle Conversational Text through Visual Analytics},
  number={3},
  volume={37},
  issn={0167-7055},
  journal={Computer Graphics Forum},
  pages={351--365},
  author={El-Assady, Mennatallah and Sevastjanova, Rita and Keim, Daniel A. and Collins, Christopher}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42869">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-17T11:16:10Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Collins, Christopher</dc:contributor>
    <dcterms:issued>2018-07-10</dcterms:issued>
    <dc:creator>Collins, Christopher</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42869/1/El-Assady_2-14d2oh8nw56ia4.pdf"/>
    <dcterms:title>ThreadReconstructor : Modeling Reply-Chains to Untangle Conversational Text through Visual Analytics</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42869"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42869/1/El-Assady_2-14d2oh8nw56ia4.pdf"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dc:contributor>Sevastjanova, Rita</dc:contributor>
    <dcterms:abstract xml:lang="eng">We present ThreadReconstructor, a visual analytics approach for detecting and analyzing the implicit conversational structure of discussions, e.g., in political debates and forums. Our work is motivated by the need to reveal and understand single threads in massive online conversations and verbatim text transcripts. We combine supervised and unsupervised machine learning models to generate a basic structure that is enriched by user‐defined queries and rule‐based heuristics. Depending on the data and tasks, users can modify and create various reconstruction models that are presented and compared in the visualization interface. Our tool enables the exploration of the generated threaded structures and the analysis of the untangled reply‐chains, comparing different models and their agreement. To understand the inner‐workings of the models, we visualize their decision spaces, including all considered candidate relations. In addition to a quantitative evaluation, we report qualitative feedback from an expert user study with four forum moderators and one machine learning expert, showing the effectiveness of our approach.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-17T11:16:10Z</dc:date>
    <dc:creator>Sevastjanova, Rita</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen