Publikation: ThreadReconstructor : Modeling Reply-Chains to Untangle Conversational Text through Visual Analytics
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present ThreadReconstructor, a visual analytics approach for detecting and analyzing the implicit conversational structure of discussions, e.g., in political debates and forums. Our work is motivated by the need to reveal and understand single threads in massive online conversations and verbatim text transcripts. We combine supervised and unsupervised machine learning models to generate a basic structure that is enriched by user‐defined queries and rule‐based heuristics. Depending on the data and tasks, users can modify and create various reconstruction models that are presented and compared in the visualization interface. Our tool enables the exploration of the generated threaded structures and the analysis of the untangled reply‐chains, comparing different models and their agreement. To understand the inner‐workings of the models, we visualize their decision spaces, including all considered candidate relations. In addition to a quantitative evaluation, we report qualitative feedback from an expert user study with four forum moderators and one machine learning expert, showing the effectiveness of our approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
EL-ASSADY, Mennatallah, Rita SEVASTJANOVA, Daniel A. KEIM, Christopher COLLINS, 2018. ThreadReconstructor : Modeling Reply-Chains to Untangle Conversational Text through Visual Analytics. In: Computer Graphics Forum. 2018, 37(3), pp. 351-365. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.13425BibTex
@article{ElAssady2018-07-10Threa-42869, year={2018}, doi={10.1111/cgf.13425}, title={ThreadReconstructor : Modeling Reply-Chains to Untangle Conversational Text through Visual Analytics}, number={3}, volume={37}, issn={0167-7055}, journal={Computer Graphics Forum}, pages={351--365}, author={El-Assady, Mennatallah and Sevastjanova, Rita and Keim, Daniel A. and Collins, Christopher} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42869"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-17T11:16:10Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Collins, Christopher</dc:contributor> <dcterms:issued>2018-07-10</dcterms:issued> <dc:creator>Collins, Christopher</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42869/1/El-Assady_2-14d2oh8nw56ia4.pdf"/> <dcterms:title>ThreadReconstructor : Modeling Reply-Chains to Untangle Conversational Text through Visual Analytics</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42869"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42869/1/El-Assady_2-14d2oh8nw56ia4.pdf"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>El-Assady, Mennatallah</dc:creator> <dc:contributor>Sevastjanova, Rita</dc:contributor> <dcterms:abstract xml:lang="eng">We present ThreadReconstructor, a visual analytics approach for detecting and analyzing the implicit conversational structure of discussions, e.g., in political debates and forums. Our work is motivated by the need to reveal and understand single threads in massive online conversations and verbatim text transcripts. We combine supervised and unsupervised machine learning models to generate a basic structure that is enriched by user‐defined queries and rule‐based heuristics. Depending on the data and tasks, users can modify and create various reconstruction models that are presented and compared in the visualization interface. Our tool enables the exploration of the generated threaded structures and the analysis of the untangled reply‐chains, comparing different models and their agreement. To understand the inner‐workings of the models, we visualize their decision spaces, including all considered candidate relations. In addition to a quantitative evaluation, we report qualitative feedback from an expert user study with four forum moderators and one machine learning expert, showing the effectiveness of our approach.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-17T11:16:10Z</dc:date> <dc:creator>Sevastjanova, Rita</dc:creator> </rdf:Description> </rdf:RDF>