Publikation:

Augmenting Digital Sheet Music through Visual Analytics

Lade...
Vorschaubild

Dateien

Miller_2-134k2c5p2dlur3.pdf
Miller_2-134k2c5p2dlur3.pdfGröße: 3.52 MBDownloads: 172

Datum

2022

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computer Graphics Forum. Wiley. 2022, 41(1), pp. 301-316. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.14436

Zusammenfassung

Music analysis tasks, such as structure identification and modulation detection, are tedious when performed manually due to the complexity of the common music notation (CMN). Fully automated analysis instead misses human intuition about relevance. Existing approaches use abstract data-driven visualizations to assist music analysis but lack a suitable connection to the CMN. Therefore, music analysts often prefer to remain in their familiar context. Our approach enhances the traditional analysis workflow by complementing CMN with interactive visualization entities as minimally intrusive augmentations. Gradual step-wise transitions empower analysts to retrace and comprehend the relationship between the CMN and abstract data representations. We leverage glyph-based visualizations for harmony, rhythm and melody to demonstrate our technique's applicability. Design-driven visual query filters enable analysts to investigate statistical and semantic patterns on various abstraction levels. We conducted pair analytics sessions with 16 participants of different proficiency levels to gather qualitative feedback about the intuitiveness, traceability and understandability of our approach. The results show that MusicVis supports music analysts in getting new insights about feature characteristics while increasing their engagement and willingness to explore.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

information visualization, visual analytics, visualization, visual musicology

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MILLER, Matthias, Daniel FÜRST, Hanna SCHÄFER, Daniel A. KEIM, Mennatallah EL-ASSADY, 2022. Augmenting Digital Sheet Music through Visual Analytics. In: Computer Graphics Forum. Wiley. 2022, 41(1), pp. 301-316. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.14436
BibTex
@article{Miller2022-02Augme-56142,
  year={2022},
  doi={10.1111/cgf.14436},
  title={Augmenting Digital Sheet Music through Visual Analytics},
  number={1},
  volume={41},
  issn={0167-7055},
  journal={Computer Graphics Forum},
  pages={301--316},
  author={Miller, Matthias and Fürst, Daniel and Schäfer, Hanna and Keim, Daniel A. and El-Assady, Mennatallah}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56142">
    <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56142/1/Miller_2-134k2c5p2dlur3.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56142/1/Miller_2-134k2c5p2dlur3.pdf"/>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56142"/>
    <dcterms:abstract xml:lang="eng">Music analysis tasks, such as structure identification and modulation detection, are tedious when performed manually due to the complexity of the common music notation (CMN). Fully automated analysis instead misses human intuition about relevance. Existing approaches use abstract data-driven visualizations to assist music analysis but lack a suitable connection to the CMN. Therefore, music analysts often prefer to remain in their familiar context. Our approach enhances the traditional analysis workflow by complementing CMN with interactive visualization entities as minimally intrusive augmentations. Gradual step-wise transitions empower analysts to retrace and comprehend the relationship between the CMN and abstract data representations. We leverage glyph-based visualizations for harmony, rhythm and melody to demonstrate our technique's applicability. Design-driven visual query filters enable analysts to investigate statistical and semantic patterns on various abstraction levels. We conducted pair analytics sessions with 16 participants of different proficiency levels to gather qualitative feedback about the intuitiveness, traceability and understandability of our approach. The results show that MusicVis supports music analysts in getting new insights about feature characteristics while increasing their engagement and willingness to explore.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-17T09:41:02Z</dcterms:available>
    <dc:creator>Schäfer, Hanna</dc:creator>
    <dcterms:title>Augmenting Digital Sheet Music through Visual Analytics</dcterms:title>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-17T09:41:02Z</dc:date>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/>
    <dc:creator>Miller, Matthias</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Fürst, Daniel</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Miller, Matthias</dc:contributor>
    <dc:contributor>Schäfer, Hanna</dc:contributor>
    <dcterms:issued>2022-02</dcterms:issued>
    <dc:contributor>Fürst, Daniel</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen