Publikation:

A Nichtnegativstellensatz for polynomials in noncommuting variables

Lade...
Vorschaubild

Dateien

nirgends.pdf
nirgends.pdfGröße: 1006.74 KBDownloads: 419

Datum

2007

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Israel Journal of Mathematics. 2007, 161(1), pp. 17-27. ISSN 0021-2172. Available under: doi: 10.1007/s11856-007-0070-2

Zusammenfassung

Helton recently proved that a symmetric polynomial in noncommuting variables is positive semidefinite on all bounded self-adjoint Hilbert space operators if and only if it is a sum of hermitian squares. We characterize the polynomials which are nowhere negative semidefinite on certain `bounded basic closed semialgebraic sets´ of bounded Hilbert space operators. The obtained representation for these polynomials involves multipliers analogous to the representation known from the classical commutative Positivstellensatz. It is still an open problem if a noncommutative version of Hilbert's 17th problem holds.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

noncommutative polynomials, Nichtnegativstellensatz, sums of squares, semialgebraic sets, contractive operators.

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KLEP, Igor, Markus SCHWEIGHOFER, 2007. A Nichtnegativstellensatz for polynomials in noncommuting variables. In: Israel Journal of Mathematics. 2007, 161(1), pp. 17-27. ISSN 0021-2172. Available under: doi: 10.1007/s11856-007-0070-2
BibTex
@article{Klep2007Nicht-15642,
  year={2007},
  doi={10.1007/s11856-007-0070-2},
  title={A Nichtnegativstellensatz for polynomials in noncommuting variables},
  number={1},
  volume={161},
  issn={0021-2172},
  journal={Israel Journal of Mathematics},
  pages={17--27},
  author={Klep, Igor and Schweighofer, Markus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/15642">
    <dc:contributor>Klep, Igor</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-09T10:37:00Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2007</dcterms:issued>
    <dc:creator>Klep, Igor</dc:creator>
    <dcterms:abstract xml:lang="eng">Helton recently proved that a symmetric polynomial in noncommuting variables is positive semidefinite on all bounded self-adjoint Hilbert space operators if and only if it is a sum of hermitian squares. We characterize the polynomials which are nowhere negative semidefinite on certain `bounded basic closed semialgebraic sets´ of bounded Hilbert space operators. The obtained representation for these polynomials involves multipliers analogous to the representation known from the classical commutative Positivstellensatz. It is still an open problem if a noncommutative version of Hilbert's 17th problem holds.</dcterms:abstract>
    <dcterms:title>A Nichtnegativstellensatz for polynomials in noncommuting variables</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-09T10:37:00Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15642/2/nirgends.pdf"/>
    <dc:contributor>Schweighofer, Markus</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15642/2/nirgends.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15642"/>
    <dcterms:bibliographicCitation>First publ. in: Israel Journal of Mathematics ; 161 (2007), 1. - S. 17-27</dcterms:bibliographicCitation>
    <dc:creator>Schweighofer, Markus</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen