Publikation: Exponential varieties
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Proceedings of the London Mathematical Society. Wiley-Blackwell. 2016, 112(1), pp. 27-56. ISSN 0024-6115. eISSN 1460-244X. Available under: doi: 10.1112/plms/pdv066
Zusammenfassung
Exponential varieties arise from exponential families in statistics. These real algebraic varieties have strong positivity and convexity properties, familiar from toric varieties and their moment maps. Among them are varieties of inverses of symmetric matrices satisfying linear constraints. This class includes Gaussian graphical models. We develop a general theory of exponential varieties. These are derived from hyperbolic polynomials and their integral representations. We compare the multidegrees and ML degrees of the gradient map for hyperbolic polynomials.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
MICHALEK, Mateusz, Bernd STURMFELS, Caroline UHLER, Piotr ZWIERNIK, 2016. Exponential varieties. In: Proceedings of the London Mathematical Society. Wiley-Blackwell. 2016, 112(1), pp. 27-56. ISSN 0024-6115. eISSN 1460-244X. Available under: doi: 10.1112/plms/pdv066BibTex
@article{Michalek2016Expon-52350, year={2016}, doi={10.1112/plms/pdv066}, title={Exponential varieties}, number={1}, volume={112}, issn={0024-6115}, journal={Proceedings of the London Mathematical Society}, pages={27--56}, author={Michalek, Mateusz and Sturmfels, Bernd and Uhler, Caroline and Zwiernik, Piotr} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52350"> <dcterms:title>Exponential varieties</dcterms:title> <dc:contributor>Michalek, Mateusz</dc:contributor> <dc:contributor>Zwiernik, Piotr</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-11T13:59:26Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dc:creator>Michalek, Mateusz</dc:creator> <dc:contributor>Uhler, Caroline</dc:contributor> <dc:creator>Uhler, Caroline</dc:creator> <dc:creator>Sturmfels, Bernd</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52350"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-11T13:59:26Z</dc:date> <dc:contributor>Sturmfels, Bernd</dc:contributor> <dcterms:abstract xml:lang="eng">Exponential varieties arise from exponential families in statistics. These real algebraic varieties have strong positivity and convexity properties, familiar from toric varieties and their moment maps. Among them are varieties of inverses of symmetric matrices satisfying linear constraints. This class includes Gaussian graphical models. We develop a general theory of exponential varieties. These are derived from hyperbolic polynomials and their integral representations. We compare the multidegrees and ML degrees of the gradient map for hyperbolic polynomials.</dcterms:abstract> <dcterms:issued>2016</dcterms:issued> <dc:creator>Zwiernik, Piotr</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja