Spatiotemporal Feature Combination Model for No-Reference Video Quality Assessment
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX). Piscataway, New Jersey, USA: IEEE, 2018, pp. 72-74. eISSN 2472-7814. ISBN 978-1-5386-2605-4. Available under: doi: 10.1109/QoMEX.2018.8463426
Zusammenfassung
One of the main challenges in no-reference video quality assessment is temporal variation in a video. Methods typically were designed and tested on videos with artificial distortions, without considering spatial and temporal variations simultaneously. We propose a no-reference spatiotemporal feature combination model which extracts spatiotemporal information from a video, and tested it on a database with authentic distortions. Comparing with other methods, our model gave satisfying performance for assessing the quality of natural videos.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX), 29. Mai 2018 - 1. Juni 2018, Cagliari, Italy
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
MEN, Hui, Hanhe LIN, Dietmar SAUPE, 2018. Spatiotemporal Feature Combination Model for No-Reference Video Quality Assessment. 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX). Cagliari, Italy, 29. Mai 2018 - 1. Juni 2018. In: 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX). Piscataway, New Jersey, USA: IEEE, 2018, pp. 72-74. eISSN 2472-7814. ISBN 978-1-5386-2605-4. Available under: doi: 10.1109/QoMEX.2018.8463426BibTex
@inproceedings{Men2018Spati-44633, year={2018}, doi={10.1109/QoMEX.2018.8463426}, title={Spatiotemporal Feature Combination Model for No-Reference Video Quality Assessment}, isbn={978-1-5386-2605-4}, publisher={IEEE}, address={Piscataway, New Jersey, USA}, booktitle={2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)}, pages={72--74}, author={Men, Hui and Lin, Hanhe and Saupe, Dietmar} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44633"> <dc:contributor>Men, Hui</dc:contributor> <dcterms:issued>2018</dcterms:issued> <dc:creator>Saupe, Dietmar</dc:creator> <dc:creator>Men, Hui</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44633"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Saupe, Dietmar</dc:contributor> <dcterms:title>Spatiotemporal Feature Combination Model for No-Reference Video Quality Assessment</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-21T10:55:46Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-21T10:55:46Z</dcterms:available> <dcterms:abstract xml:lang="eng">One of the main challenges in no-reference video quality assessment is temporal variation in a video. Methods typically were designed and tested on videos with artificial distortions, without considering spatial and temporal variations simultaneously. We propose a no-reference spatiotemporal feature combination model which extracts spatiotemporal information from a video, and tested it on a database with authentic distortions. Comparing with other methods, our model gave satisfying performance for assessing the quality of natural videos.</dcterms:abstract> <dc:contributor>Lin, Hanhe</dc:contributor> <dc:creator>Lin, Hanhe</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja