Publikation: Single-Image Insect Pose Estimation by Graph Based Geometric Models and Random Forests
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We propose a new method for detailed insect pose estimation, which aims to detect landmarks as the tips of an insect’s antennae and mouthparts from a single image. In this paper, we formulate this problem as inferring a mapping from the appearance of an insect to its corresponding pose. We present a unified framework that jointly learns a mapping from the local appearance (image patch) and the global anatomical structure (silhouette) of an insect to its corresponding pose. Our main contribution is that we propose a data driven approach to learn the geometric prior for modeling various insect appearance. Combined with the discriminative power of Random Forests (RF) model, our method achieves high precision of landmark localization. This approach is evaluated using three challenging datasets of insects which we make publicly available. Experiments show that it achieves improvement over the traditional RF regression method, and comparably precision to human annotators.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SHEN, Minmin, Le DUAN, Oliver DEUSSEN, 2016. Single-Image Insect Pose Estimation by Graph Based Geometric Models and Random Forests. Computer Vision -- ECCV 2016 Workshops. Amsterdam, The Netherlands, 8. Okt. 2016 - 10. Okt. 2016. In: HUA, Gang, ed., Hervé JÉGOU, ed.. Computer Vision -- ECCV 2016 Workshops : Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part I. Cham: Springer International Publishing, 2016, pp. 217-230. Lecture Notes in Computer Science. 9913. ISBN 978-3-319-46603-3. Available under: doi: 10.1007/978-3-319-46604-0_16BibTex
@inproceedings{Shen2016Singl-37406, year={2016}, doi={10.1007/978-3-319-46604-0_16}, title={Single-Image Insect Pose Estimation by Graph Based Geometric Models and Random Forests}, number={9913}, isbn={978-3-319-46603-3}, publisher={Springer International Publishing}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Computer Vision -- ECCV 2016 Workshops : Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part I}, pages={217--230}, editor={Hua, Gang and Jégou, Hervé}, author={Shen, Minmin and Duan, Le and Deussen, Oliver}, note={Die Konferenz fand vom 8.-10. Oktober und vom 15.-16. Oktober 2016 statt.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37406"> <dc:creator>Duan, Le</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37406/1/Shen_2-zuz8656k1ia99.pdf"/> <dcterms:abstract xml:lang="eng">We propose a new method for detailed insect pose estimation, which aims to detect landmarks as the tips of an insect’s antennae and mouthparts from a single image. In this paper, we formulate this problem as inferring a mapping from the appearance of an insect to its corresponding pose. We present a unified framework that jointly learns a mapping from the local appearance (image patch) and the global anatomical structure (silhouette) of an insect to its corresponding pose. Our main contribution is that we propose a data driven approach to learn the geometric prior for modeling various insect appearance. Combined with the discriminative power of Random Forests (RF) model, our method achieves high precision of landmark localization. This approach is evaluated using three challenging datasets of insects which we make publicly available. Experiments show that it achieves improvement over the traditional RF regression method, and comparably precision to human annotators.</dcterms:abstract> <dc:contributor>Duan, Le</dc:contributor> <dc:contributor>Shen, Minmin</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37406"/> <dc:contributor>Deussen, Oliver</dc:contributor> <dc:creator>Shen, Minmin</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37406/1/Shen_2-zuz8656k1ia99.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2016</dcterms:issued> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-14T11:08:02Z</dc:date> <dc:creator>Deussen, Oliver</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-14T11:08:02Z</dcterms:available> <dcterms:title>Single-Image Insect Pose Estimation by Graph Based Geometric Models and Random Forests</dcterms:title> </rdf:Description> </rdf:RDF>