Publikation:

Single-Image Insect Pose Estimation by Graph Based Geometric Models and Random Forests

Lade...
Vorschaubild

Dateien

Shen_2-zuz8656k1ia99.pdf
Shen_2-zuz8656k1ia99.pdfGröße: 310.63 KBDownloads: 343

Datum

2016

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

HUA, Gang, ed., Hervé JÉGOU, ed.. Computer Vision -- ECCV 2016 Workshops : Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part I. Cham: Springer International Publishing, 2016, pp. 217-230. Lecture Notes in Computer Science. 9913. ISBN 978-3-319-46603-3. Available under: doi: 10.1007/978-3-319-46604-0_16

Zusammenfassung

We propose a new method for detailed insect pose estimation, which aims to detect landmarks as the tips of an insect’s antennae and mouthparts from a single image. In this paper, we formulate this problem as inferring a mapping from the appearance of an insect to its corresponding pose. We present a unified framework that jointly learns a mapping from the local appearance (image patch) and the global anatomical structure (silhouette) of an insect to its corresponding pose. Our main contribution is that we propose a data driven approach to learn the geometric prior for modeling various insect appearance. Combined with the discriminative power of Random Forests (RF) model, our method achieves high precision of landmark localization. This approach is evaluated using three challenging datasets of insects which we make publicly available. Experiments show that it achieves improvement over the traditional RF regression method, and comparably precision to human annotators.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Computer Vision -- ECCV 2016 Workshops, 8. Okt. 2016 - 10. Okt. 2016, Amsterdam, The Netherlands
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SHEN, Minmin, Le DUAN, Oliver DEUSSEN, 2016. Single-Image Insect Pose Estimation by Graph Based Geometric Models and Random Forests. Computer Vision -- ECCV 2016 Workshops. Amsterdam, The Netherlands, 8. Okt. 2016 - 10. Okt. 2016. In: HUA, Gang, ed., Hervé JÉGOU, ed.. Computer Vision -- ECCV 2016 Workshops : Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part I. Cham: Springer International Publishing, 2016, pp. 217-230. Lecture Notes in Computer Science. 9913. ISBN 978-3-319-46603-3. Available under: doi: 10.1007/978-3-319-46604-0_16
BibTex
@inproceedings{Shen2016Singl-37406,
  year={2016},
  doi={10.1007/978-3-319-46604-0_16},
  title={Single-Image Insect Pose Estimation by Graph Based Geometric Models and Random Forests},
  number={9913},
  isbn={978-3-319-46603-3},
  publisher={Springer International Publishing},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Computer Vision -- ECCV 2016 Workshops : Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part I},
  pages={217--230},
  editor={Hua, Gang and Jégou, Hervé},
  author={Shen, Minmin and Duan, Le and Deussen, Oliver},
  note={Die Konferenz fand vom 8.-10. Oktober und vom 15.-16. Oktober 2016 statt.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37406">
    <dc:creator>Duan, Le</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37406/1/Shen_2-zuz8656k1ia99.pdf"/>
    <dcterms:abstract xml:lang="eng">We propose a new method for detailed insect pose estimation, which aims to detect landmarks as the tips of an insect’s antennae and mouthparts from a single image. In this paper, we formulate this problem as inferring a mapping from the appearance of an insect to its corresponding pose. We present a unified framework that jointly learns a mapping from the local appearance (image patch) and the global anatomical structure (silhouette) of an insect to its corresponding pose. Our main contribution is that we propose a data driven approach to learn the geometric prior for modeling various insect appearance. Combined with the discriminative power of Random Forests (RF) model, our method achieves high precision of landmark localization. This approach is evaluated using three challenging datasets of insects which we make publicly available. Experiments show that it achieves improvement over the traditional RF regression method, and comparably precision to human annotators.</dcterms:abstract>
    <dc:contributor>Duan, Le</dc:contributor>
    <dc:contributor>Shen, Minmin</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37406"/>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:creator>Shen, Minmin</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37406/1/Shen_2-zuz8656k1ia99.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2016</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-14T11:08:02Z</dc:date>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-14T11:08:02Z</dcterms:available>
    <dcterms:title>Single-Image Insect Pose Estimation by Graph Based Geometric Models and Random Forests</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Die Konferenz fand vom 8.-10. Oktober und vom 15.-16. Oktober 2016 statt.
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen