Publikation: Optimal Feedback Law Recovery by Gradient-Augmented Sparse Polynomial Regression
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
A sparse regression approach for the computation of high-dimensional optimal feedback laws arising in deterministic nonlinear control is proposed. The approach exploits the control-theoretical link between Hamilton-Jacobi-Bellman PDEs characterizing the value function of the optimal control problems, and rst-order optimality conditions via Pontryagin's Maximum Principle. The latter is used as a representation formula to recover the value function and its gradient at arbitrary points in the space-time domain through the solution of a two-point boundary value problem. After generating a dataset consisting of di erent state-value pairs, a hyperbolic cross polynomial model for the value function is tted using a LASSO regression. An extended set of low and high-dimensional numerical tests in nonlinear optimal control reveal that enriching the dataset with gradient information reduces the number of training samples, and that the sparse polynomial regression consistently yields a feedback law of lower complexity.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
AZMI, Behzad, Dante KALISE, Karl KUNISCH, 2021. Optimal Feedback Law Recovery by Gradient-Augmented Sparse Polynomial Regression. In: Journal of Machine Learning Research (JMLR). Microtome Publishing. 2021, 22, 48. ISSN 1532-4435. eISSN 1533-7928BibTex
@article{Azmi2021Optim-56521, year={2021}, title={Optimal Feedback Law Recovery by Gradient-Augmented Sparse Polynomial Regression}, url={https://jmlr.org/papers/v22/20-755.html}, volume={22}, issn={1532-4435}, journal={Journal of Machine Learning Research (JMLR)}, author={Azmi, Behzad and Kalise, Dante and Kunisch, Karl}, note={Article Number: 48} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56521"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56521"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-10T14:38:56Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Azmi, Behzad</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56521/1/Azmi_2-ziodqjb4nyrb7.pdf"/> <dc:creator>Azmi, Behzad</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">A sparse regression approach for the computation of high-dimensional optimal feedback laws arising in deterministic nonlinear control is proposed. The approach exploits the control-theoretical link between Hamilton-Jacobi-Bellman PDEs characterizing the value function of the optimal control problems, and rst-order optimality conditions via Pontryagin's Maximum Principle. The latter is used as a representation formula to recover the value function and its gradient at arbitrary points in the space-time domain through the solution of a two-point boundary value problem. After generating a dataset consisting of di erent state-value pairs, a hyperbolic cross polynomial model for the value function is tted using a LASSO regression. An extended set of low and high-dimensional numerical tests in nonlinear optimal control reveal that enriching the dataset with gradient information reduces the number of training samples, and that the sparse polynomial regression consistently yields a feedback law of lower complexity.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2021</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-10T14:38:56Z</dcterms:available> <dc:creator>Kunisch, Karl</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56521/1/Azmi_2-ziodqjb4nyrb7.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Optimal Feedback Law Recovery by Gradient-Augmented Sparse Polynomial Regression</dcterms:title> <dc:contributor>Kunisch, Karl</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Kalise, Dante</dc:creator> <dc:contributor>Kalise, Dante</dc:contributor> </rdf:Description> </rdf:RDF>