Publikation:

Optimal Feedback Law Recovery by Gradient-Augmented Sparse Polynomial Regression

Lade...
Vorschaubild

Dateien

Azmi_2-ziodqjb4nyrb7.pdf
Azmi_2-ziodqjb4nyrb7.pdfGröße: 2.19 MBDownloads: 148

Datum

2021

Autor:innen

Kalise, Dante
Kunisch, Karl

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Machine Learning Research (JMLR). Microtome Publishing. 2021, 22, 48. ISSN 1532-4435. eISSN 1533-7928

Zusammenfassung

A sparse regression approach for the computation of high-dimensional optimal feedback laws arising in deterministic nonlinear control is proposed. The approach exploits the control-theoretical link between Hamilton-Jacobi-Bellman PDEs characterizing the value function of the optimal control problems, and rst-order optimality conditions via Pontryagin's Maximum Principle. The latter is used as a representation formula to recover the value function and its gradient at arbitrary points in the space-time domain through the solution of a two-point boundary value problem. After generating a dataset consisting of di erent state-value pairs, a hyperbolic cross polynomial model for the value function is tted using a LASSO regression. An extended set of low and high-dimensional numerical tests in nonlinear optimal control reveal that enriching the dataset with gradient information reduces the number of training samples, and that the sparse polynomial regression consistently yields a feedback law of lower complexity.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Optimal Feedback Control, Optimality Conditions, Hamilton-Jacobi-Bellman PDE, Polynomial Approximation, Sparse Optimization

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690AZMI, Behzad, Dante KALISE, Karl KUNISCH, 2021. Optimal Feedback Law Recovery by Gradient-Augmented Sparse Polynomial Regression. In: Journal of Machine Learning Research (JMLR). Microtome Publishing. 2021, 22, 48. ISSN 1532-4435. eISSN 1533-7928
BibTex
@article{Azmi2021Optim-56521,
  year={2021},
  title={Optimal Feedback Law Recovery by Gradient-Augmented Sparse Polynomial Regression},
  url={https://jmlr.org/papers/v22/20-755.html},
  volume={22},
  issn={1532-4435},
  journal={Journal of Machine Learning Research (JMLR)},
  author={Azmi, Behzad and Kalise, Dante and Kunisch, Karl},
  note={Article Number: 48}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56521">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56521"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-10T14:38:56Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Azmi, Behzad</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56521/1/Azmi_2-ziodqjb4nyrb7.pdf"/>
    <dc:creator>Azmi, Behzad</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">A sparse regression approach for the computation of high-dimensional optimal feedback laws arising in deterministic nonlinear control is proposed. The approach exploits the control-theoretical link between Hamilton-Jacobi-Bellman PDEs characterizing the value function of the optimal control problems, and  rst-order optimality conditions via Pontryagin's Maximum Principle. The latter is used as a representation formula to recover the value function and its gradient at arbitrary points in the space-time domain through the solution of a two-point boundary value problem. After generating a dataset consisting of di erent state-value pairs, a hyperbolic cross polynomial model for the value function is  tted using a LASSO regression. An extended set of low and high-dimensional numerical tests in nonlinear optimal control reveal that enriching the dataset with gradient information reduces the number of training samples, and that the sparse polynomial regression consistently yields a feedback law of lower complexity.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2021</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-10T14:38:56Z</dcterms:available>
    <dc:creator>Kunisch, Karl</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56521/1/Azmi_2-ziodqjb4nyrb7.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Optimal Feedback Law Recovery by Gradient-Augmented Sparse Polynomial Regression</dcterms:title>
    <dc:contributor>Kunisch, Karl</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Kalise, Dante</dc:creator>
    <dc:contributor>Kalise, Dante</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

2022-02-10

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen