Publikation: A Recursive Subdivision Technique for Sampling Multi-class Scatterplots
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a non-uniform recursive sampling technique for multi-class scatterplots, with the specific goal of faithfully presenting relative data and class densities, while preserving major outliers in the plots. Our technique is based on a customized binary kd-tree, in which leaf nodes are created by recursively subdividing the underlying multi-class density map. By backtracking, we merge leaf nodes until they encompass points of all classes for our subsequently applied outlier-aware multi-class sampling strategy. A quantitative evaluation shows that our approach can better preserve outliers and at the same time relative densities in multi-class scatterplots compared to the previous approaches, several case studies demonstrate the effectiveness of our approach in exploring complex and real world data.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CHEN, Xin, Tong GE, Jian ZHANG, Baoquan CHEN, Chi-Wing FU, Oliver DEUSSEN, Yunhai WANG, 2020. A Recursive Subdivision Technique for Sampling Multi-class Scatterplots. In: IEEE Transactions on Visualization and Computer Graphics. Institute of Electrical and Electronics Engineers (IEEE). 2020, 26(1), pp. 729-738. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2019.2934541BibTex
@article{Chen2020-01Recur-46820, year={2020}, doi={10.1109/TVCG.2019.2934541}, title={A Recursive Subdivision Technique for Sampling Multi-class Scatterplots}, number={1}, volume={26}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={729--738}, author={Chen, Xin and Ge, Tong and Zhang, Jian and Chen, Baoquan and Fu, Chi-Wing and Deussen, Oliver and Wang, Yunhai} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46820"> <dc:creator>Deussen, Oliver</dc:creator> <dc:creator>Wang, Yunhai</dc:creator> <dc:creator>Zhang, Jian</dc:creator> <dcterms:title>A Recursive Subdivision Technique for Sampling Multi-class Scatterplots</dcterms:title> <dc:contributor>Deussen, Oliver</dc:contributor> <dcterms:abstract xml:lang="eng">We present a non-uniform recursive sampling technique for multi-class scatterplots, with the specific goal of faithfully presenting relative data and class densities, while preserving major outliers in the plots. Our technique is based on a customized binary kd-tree, in which leaf nodes are created by recursively subdividing the underlying multi-class density map. By backtracking, we merge leaf nodes until they encompass points of all classes for our subsequently applied outlier-aware multi-class sampling strategy. A quantitative evaluation shows that our approach can better preserve outliers and at the same time relative densities in multi-class scatterplots compared to the previous approaches, several case studies demonstrate the effectiveness of our approach in exploring complex and real world data.</dcterms:abstract> <dc:creator>Fu, Chi-Wing</dc:creator> <dc:contributor>Chen, Xin</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Chen, Xin</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-11T09:59:20Z</dcterms:available> <dc:contributor>Ge, Tong</dc:contributor> <dc:contributor>Fu, Chi-Wing</dc:contributor> <dc:creator>Ge, Tong</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-11T09:59:20Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Chen, Baoquan</dc:creator> <dcterms:issued>2020-01</dcterms:issued> <dc:contributor>Zhang, Jian</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Chen, Baoquan</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46820"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Wang, Yunhai</dc:contributor> </rdf:Description> </rdf:RDF>