Orbit Spaces of Small Tori
Orbit Spaces of Small Tori
Loading...
Date
2001
Authors
A'Campo-Neuen, Annette
Hausen, Jürgen
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik und Informatik; 151
URI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Preprint
Publication status
Published in
Abstract
Consider an algebraic torus of small dimension acting on an open subset of \CC^n, or more generally on a quasiaffine variety such that a separated orbit space exists. We discuss under which conditions this orbit space is quasiprojective. One of our counterexamples provides a toric variety with enough effective invariant Cartier divisors that is not embeddable into a smooth toric variety.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
A'CAMPO-NEUEN, Annette, Jürgen HAUSEN, 2001. Orbit Spaces of Small ToriBibTex
@unpublished{ACampoNeuen2001Orbit-6238, year={2001}, title={Orbit Spaces of Small Tori}, author={A'Campo-Neuen, Annette and Hausen, Jürgen} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6238"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>A'Campo-Neuen, Annette</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6238/1/preprint_151.pdf"/> <dc:contributor>A'Campo-Neuen, Annette</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6238"/> <dcterms:issued>2001</dcterms:issued> <dc:contributor>Hausen, Jürgen</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Hausen, Jürgen</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:26Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:26Z</dcterms:available> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">Consider an algebraic torus of small dimension acting on an open subset of \CC^n, or more generally on a quasiaffine variety such that a separated orbit space exists. We discuss under which conditions this orbit space is quasiprojective. One of our counterexamples provides a toric variety with enough effective invariant Cartier divisors that is not embeddable into a smooth toric variety.</dcterms:abstract> <dcterms:title>Orbit Spaces of Small Tori</dcterms:title> <dc:format>application/pdf</dc:format> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6238/1/preprint_151.pdf"/> </rdf:Description> </rdf:RDF>