Orbit Spaces of Small Tori

Loading...
Thumbnail Image
Date
2001
Authors
A'Campo-Neuen, Annette
Hausen, Jürgen
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik und Informatik; 151
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Preprint
Publication status
Published in
Abstract
Consider an algebraic torus of small dimension acting on an open subset of \CC^n, or more generally on a quasiaffine variety such that a separated orbit space exists. We discuss under which conditions this orbit space is quasiprojective. One of our counterexamples provides a toric variety with enough effective invariant Cartier divisors that is not embeddable into a smooth toric variety.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690A'CAMPO-NEUEN, Annette, Jürgen HAUSEN, 2001. Orbit Spaces of Small Tori
BibTex
@unpublished{ACampoNeuen2001Orbit-6238,
  year={2001},
  title={Orbit Spaces of Small Tori},
  author={A'Campo-Neuen, Annette and Hausen, Jürgen}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6238">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>A'Campo-Neuen, Annette</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6238/1/preprint_151.pdf"/>
    <dc:contributor>A'Campo-Neuen, Annette</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6238"/>
    <dcterms:issued>2001</dcterms:issued>
    <dc:contributor>Hausen, Jürgen</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Hausen, Jürgen</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:26Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:26Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">Consider an algebraic torus of small dimension acting on an open subset of \CC^n, or more generally on a quasiaffine variety such that a separated orbit space exists. We discuss under which conditions this orbit space is quasiprojective. One of our counterexamples provides a toric variety with enough effective invariant Cartier divisors that is not embeddable into a smooth toric variety.</dcterms:abstract>
    <dcterms:title>Orbit Spaces of Small Tori</dcterms:title>
    <dc:format>application/pdf</dc:format>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6238/1/preprint_151.pdf"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Refereed