Publikation: Intervals of Totally Nonnegative Matrices
Lade...
Dateien
Datum
2013
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung
Totally nonnegative matrices, i.e., matrices having all their minors nonnegative, and matrix intervals with respect to the checkerboard ordering are considered. It is proven that if the two bound matrices of such a matrix interval are nonsigular and totally nonnegative (and in addition all their zero minors are identical) then all matrices from this matrix interval are also nonsingular and totally nonnegative (with identical zero minors).
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
totally nonnegative matrix, checkerboard ordering, matrix interval, Cauchon diagram, Cauchon algorithm
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
ADM, Mohammad, Jürgen GARLOFF, 2013. Intervals of Totally Nonnegative MatricesBibTex
@techreport{Adm2013Inter-25005, year={2013}, series={Konstanzer Schriften in Mathematik}, title={Intervals of Totally Nonnegative Matrices}, number={321}, author={Adm, Mohammad and Garloff, Jürgen} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25005"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25005/1/Adm_250051.pdf"/> <dc:contributor>Adm, Mohammad</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2013</dcterms:issued> <dc:creator>Garloff, Jürgen</dc:creator> <dc:creator>Adm, Mohammad</dc:creator> <dcterms:abstract xml:lang="eng">Totally nonnegative matrices, i.e., matrices having all their minors nonnegative, and matrix intervals with respect to the checkerboard ordering are considered. It is proven that if the two bound matrices of such a matrix interval are nonsigular and totally nonnegative (and in addition all their zero minors are identical) then all matrices from this matrix interval are also nonsingular and totally nonnegative (with identical zero minors).</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25005"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-11-08T07:13:25Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-11-08T07:13:25Z</dcterms:available> <dc:contributor>Garloff, Jürgen</dc:contributor> <dc:language>eng</dc:language> <dcterms:title>Intervals of Totally Nonnegative Matrices</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25005/1/Adm_250051.pdf"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja