Publikation:

Adaptive thinning of atmospheric observations in data assimilation with vector quantization and filtering methods

Lade...
Vorschaubild

Dateien

Ochotta_240780.pdf
Ochotta_240780.pdfGröße: 522.12 KBDownloads: 487

Datum

2005

Autor:innen

Ochotta, Tilo
Wergen, Werner

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Quarterly Journal of the Royal Meteorological Society. 2005, 131(613), pp. 3427-3437. ISSN 0035-9009. eISSN 1477-870X. Available under: doi: 10.1256/qj.05.94

Zusammenfassung

In data assimilation for numerical weather prediction, measurements of various observation systems are combined with background data to define initial states for the forecasts. Current and future observation systems, in particular satellite instruments, produce large numbers of measurements with high spatial and temporal density. Such datasets significantly increase the computational costs of the assimilation and, moreover, can violate the assumption of spatially independent observation errors. To ameliorate these problems, we propose two greedy thinning algorithms, which reduce the number of assimilated observations while retaining the essential information content of the data. In the first method, the number of points in the output set is increased iteratively. We use a clustering method with a distance metric that combines spatial distance with difference in observation values. In a second scheme, we iteratively estimate the redundancy of the current observation set and remove the most redundant data points. We evaluate the proposed methods with respect to a geometric error measure and compare them with a uniform sampling scheme. We obtain good representations of the original data with thinnings retaining only a small portion of observations. We also evaluate our thinnings of ATOVS satellite data using the assimilation system of the Deutscher Wetterdienst. Impact of the thinning on the analysed fields and on the subsequent forecasts is discussed.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Clustering, numerical weather prediction, redundant satellite data

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690OCHOTTA, Tilo, Christoph GEBHARDT, Dietmar SAUPE, Werner WERGEN, 2005. Adaptive thinning of atmospheric observations in data assimilation with vector quantization and filtering methods. In: Quarterly Journal of the Royal Meteorological Society. 2005, 131(613), pp. 3427-3437. ISSN 0035-9009. eISSN 1477-870X. Available under: doi: 10.1256/qj.05.94
BibTex
@article{Ochotta2005Adapt-24078,
  year={2005},
  doi={10.1256/qj.05.94},
  title={Adaptive thinning of atmospheric observations in data assimilation with vector quantization and filtering methods},
  number={613},
  volume={131},
  issn={0035-9009},
  journal={Quarterly Journal of the Royal Meteorological Society},
  pages={3427--3437},
  author={Ochotta, Tilo and Gebhardt, Christoph and Saupe, Dietmar and Wergen, Werner}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24078">
    <dc:creator>Wergen, Werner</dc:creator>
    <dcterms:issued>2005</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-25T07:32:29Z</dc:date>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24078"/>
    <dc:language>eng</dc:language>
    <dcterms:bibliographicCitation>Quarterly Journal of the Royal Meteorological Society ; 131 (2005), 613. - S. 3427-3437 (Part C)</dcterms:bibliographicCitation>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24078/1/Ochotta_240780.pdf"/>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dcterms:title>Adaptive thinning of atmospheric observations in data assimilation with vector quantization and filtering methods</dcterms:title>
    <dc:contributor>Gebhardt, Christoph</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Wergen, Werner</dc:contributor>
    <dcterms:abstract xml:lang="eng">In data assimilation for numerical weather prediction, measurements of various observation systems are combined with background data to define initial states for the forecasts. Current and future observation systems, in particular satellite instruments, produce large numbers of measurements with high spatial and temporal density. Such datasets significantly increase the computational costs of the assimilation and, moreover, can violate the assumption of spatially independent observation errors. To ameliorate these problems, we propose two greedy thinning algorithms, which reduce the number of assimilated observations while retaining the essential information content of the data. In the first method, the number of points in the output set is increased iteratively. We use a clustering method with a distance metric that combines spatial distance with difference in observation values. In a second scheme, we iteratively estimate the redundancy of the current observation set and remove the most redundant data points. We evaluate the proposed methods with respect to a geometric error measure and compare them with a uniform sampling scheme. We obtain good representations of the original data with thinnings retaining only a small portion of observations. We also evaluate our thinnings of ATOVS satellite data using the assimilation system of the Deutscher Wetterdienst. Impact of the thinning on the analysed fields and on the subsequent forecasts is discussed.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-25T07:32:29Z</dcterms:available>
    <dc:creator>Ochotta, Tilo</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Gebhardt, Christoph</dc:creator>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Ochotta, Tilo</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24078/1/Ochotta_240780.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen