Publikation: DAG Mining for Code Compaction
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In order to reduce cost and energy consumption, code-size optimization is an important issue for embedded systems. Traditional instruction saving techniques recognize code duplications only in exactly the same order within the program. As instructions can be reordered with respect to their data dependencies, Procedural Abstraction achieves better results on data flow graphs that reflect these dependencies. Since these graphs are always directed acyclic graphs (DAGs), a special mining algorithm for DAGs is presented in this chapter. Using a new canonical representation that is based on the topological order of the nodes in a DAG, the proposed algorithm is faster and uses less memory than the general graph mining algorithm gSpan. Due to its search lattice expansion strategy, an efficient pruning strategy is applied to the algorithm while using it for Procedural Abstraction. Its search for unconnected graph fragments outperforms traditional approaches for code-size reduction.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WERTH, Tobias, Marc WÖRLEIN, Alexander DREWEKE, Ingrid FISCHER, Michael PHILIPPSEN, 2009. DAG Mining for Code Compaction. In: CAO, Longbing, ed. and others. Data Mining for Business Applications. New York: Springer, 2009, pp. 209-223BibTex
@incollection{Werth2009Minin-2999, year={2009}, title={DAG Mining for Code Compaction}, publisher={Springer}, address={New York}, booktitle={Data Mining for Business Applications}, pages={209--223}, editor={Cao, Longbing}, author={Werth, Tobias and Wörlein, Marc and Dreweke, Alexander and Fischer, Ingrid and Philippsen, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/2999"> <dc:creator>Philippsen, Michael</dc:creator> <dcterms:abstract xml:lang="eng">In order to reduce cost and energy consumption, code-size optimization is an important issue for embedded systems. Traditional instruction saving techniques recognize code duplications only in exactly the same order within the program. As instructions can be reordered with respect to their data dependencies, Procedural Abstraction achieves better results on data flow graphs that reflect these dependencies. Since these graphs are always directed acyclic graphs (DAGs), a special mining algorithm for DAGs is presented in this chapter. Using a new canonical representation that is based on the topological order of the nodes in a DAG, the proposed algorithm is faster and uses less memory than the general graph mining algorithm gSpan. Due to its search lattice expansion strategy, an efficient pruning strategy is applied to the algorithm while using it for Procedural Abstraction. Its search for unconnected graph fragments outperforms traditional approaches for code-size reduction.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/2999"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2009</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:42Z</dc:date> <dc:contributor>Dreweke, Alexander</dc:contributor> <dc:creator>Fischer, Ingrid</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:bibliographicCitation>Publ. in: Data Mining for Business Applications / Longbing Cao ... (eds.). New York: Springer, 2009, pp. 209-223</dcterms:bibliographicCitation> <dc:creator>Wörlein, Marc</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Wörlein, Marc</dc:contributor> <dc:creator>Werth, Tobias</dc:creator> <dcterms:title>DAG Mining for Code Compaction</dcterms:title> <dc:contributor>Philippsen, Michael</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:contributor>Fischer, Ingrid</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:42Z</dcterms:available> <dc:creator>Dreweke, Alexander</dc:creator> <dc:contributor>Werth, Tobias</dc:contributor> </rdf:Description> </rdf:RDF>