Publikation: Discovering Dynamic Classification Hierarchies in OLAP Dimensions
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The standard approach to OLAP requires measures and dimensions of a cube to be known at the design stage. Besides, dimensions are required to be non-volatile, balanced and normalized. These constraints appear too rigid for many data sets, especially semi-structured ones, such as user-generated content in social networks and other web applications. We enrich the multidimensional analysis of such data via content-driven discovery of dimensions and classification hierarchies. Discovered elements are dynamic by nature and evolve along with the underlying data set.
We demonstrate the benefits of our approach by building a data warehouse for the public stream of the popular social network and microblogging service Twitter. Our approach allows to classify users by their activity, popularity, behavior as well as to organize messages by topic, impact, origin, method of generation, etc. Such capturing of the dynamic characteristic of the data adds more intelligence to the analysis and extends the limits of OLAP.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
REHMAN, Nafees Ur, Svetlana MANSMANN, Andreas WEILER, Marc H. SCHOLL, 2012. Discovering Dynamic Classification Hierarchies in OLAP Dimensions. In: CHEN, Li, ed., Alexander FELFERNIG, ed., Jiming LIU, ed., Zbigniew W. RAŚ, ed.. Foundations of Intelligent Systems. Berlin: Springer, 2012, pp. 425-434. Lecture Notes in Computer Science. 7661. ISBN 978-3-642-34623-1. Available under: doi: 10.1007/978-3-642-34624-8_48BibTex
@inproceedings{Rehman2012Disco-25238, year={2012}, doi={10.1007/978-3-642-34624-8_48}, title={Discovering Dynamic Classification Hierarchies in OLAP Dimensions}, number={7661}, isbn={978-3-642-34623-1}, publisher={Springer}, address={Berlin}, series={Lecture Notes in Computer Science}, booktitle={Foundations of Intelligent Systems}, pages={425--434}, editor={Chen, Li and Felfernig, Alexander and Liu, Jiming and Raś, Zbigniew W.}, author={Rehman, Nafees Ur and Mansmann, Svetlana and Weiler, Andreas and Scholl, Marc H.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25238"> <dc:creator>Scholl, Marc H.</dc:creator> <dc:contributor>Mansmann, Svetlana</dc:contributor> <dc:creator>Weiler, Andreas</dc:creator> <dcterms:bibliographicCitation>Foundations of intelligent Systems : 20th international symposium ; proceedings, ISMIS 2012, Macau, China, December 4 - 7, 2012 / Li Chen ... (ed.). - Berlin : Springer, 2012. - S. 425-434. - (Lecture notes in computer science ; 7661 : Lecture notes in artificial intelligence). - ISBN 978-3-642-34623-1</dcterms:bibliographicCitation> <dc:contributor>Rehman, Nafees Ur</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25238"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Rehman, Nafees Ur</dc:creator> <dc:creator>Mansmann, Svetlana</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25238/2/Rehman_252385.pdf"/> <dcterms:title>Discovering Dynamic Classification Hierarchies in OLAP Dimensions</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25238/2/Rehman_252385.pdf"/> <dcterms:issued>2012</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Weiler, Andreas</dc:contributor> <dc:contributor>Scholl, Marc H.</dc:contributor> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-11-22T10:50:27Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-11-22T10:50:27Z</dc:date> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">The standard approach to OLAP requires measures and dimensions of a cube to be known at the design stage. Besides, dimensions are required to be non-volatile, balanced and normalized. These constraints appear too rigid for many data sets, especially semi-structured ones, such as user-generated content in social networks and other web applications. We enrich the multidimensional analysis of such data via content-driven discovery of dimensions and classification hierarchies. Discovered elements are dynamic by nature and evolve along with the underlying data set.<br /><br /><br /><br />We demonstrate the benefits of our approach by building a data warehouse for the public stream of the popular social network and microblogging service Twitter. Our approach allows to classify users by their activity, popularity, behavior as well as to organize messages by topic, impact, origin, method of generation, etc. Such capturing of the dynamic characteristic of the data adds more intelligence to the analysis and extends the limits of OLAP.</dcterms:abstract> </rdf:Description> </rdf:RDF>