Publikation: Separation and Rare Events
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
When separation is a problem in binary dependent variable models, many researchers use Firth's penalized maximum likelihood in order to obtain finite estimates (Firth, 1993; Zorn, 2005; Rainey, 2016). In this paper, I show that this approach can lead to inferences in the opposite direction of the separation when the number of observations are sufficiently large and both the dependent and independent variables are rare events. As large datasets with rare events are frequently used in political science, such as dyadic data measuring interstate relations, a lack of awareness of this problem may lead to inferential issues. Simulations and an empirical illustration show that the use of independent “weakly-informative” prior distributions centered at zero, for example, the Cauchy prior suggested by Gelman et al. (2008), can avoid this issue. More generally, the results caution researchers to be aware of how the choice of prior interacts with the structure of their data, when estimating models in the presence of separation.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BEISER-MCGRATH, Liam F., 2022. Separation and Rare Events. In: Political Science Research and Methods. Cambridge University Press. 2022, 10(2), pp. 428-437. ISSN 2049-8470. eISSN 2049-8489. Available under: doi: 10.1017/psrm.2020.46BibTex
@article{BeiserMcGrath2022Separ-57342, year={2022}, doi={10.1017/psrm.2020.46}, title={Separation and Rare Events}, number={2}, volume={10}, issn={2049-8470}, journal={Political Science Research and Methods}, pages={428--437}, author={Beiser-McGrath, Liam F.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57342"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57342/1/Beiser-McGrath_2-xoos3thk4kg10.pdf"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-22T10:30:17Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-22T10:30:17Z</dcterms:available> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-sa/4.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57342"/> <dc:rights>Attribution-NonCommercial-ShareAlike 4.0 International</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:abstract xml:lang="eng">When separation is a problem in binary dependent variable models, many researchers use Firth's penalized maximum likelihood in order to obtain finite estimates (Firth, 1993; Zorn, 2005; Rainey, 2016). In this paper, I show that this approach can lead to inferences in the opposite direction of the separation when the number of observations are sufficiently large and both the dependent and independent variables are rare events. As large datasets with rare events are frequently used in political science, such as dyadic data measuring interstate relations, a lack of awareness of this problem may lead to inferential issues. Simulations and an empirical illustration show that the use of independent “weakly-informative” prior distributions centered at zero, for example, the Cauchy prior suggested by Gelman et al. (2008), can avoid this issue. More generally, the results caution researchers to be aware of how the choice of prior interacts with the structure of their data, when estimating models in the presence of separation.</dcterms:abstract> <dc:contributor>Beiser-McGrath, Liam F.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57342/1/Beiser-McGrath_2-xoos3thk4kg10.pdf"/> <dcterms:title>Separation and Rare Events</dcterms:title> <dc:creator>Beiser-McGrath, Liam F.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:issued>2022</dcterms:issued> </rdf:Description> </rdf:RDF>