Publikation:

Separation and Rare Events

Lade...
Vorschaubild

Dateien

Beiser-McGrath_2-xoos3thk4kg10.pdf
Beiser-McGrath_2-xoos3thk4kg10.pdfGröße: 418.93 KBDownloads: 35

Datum

2022

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Political Science Research and Methods. Cambridge University Press. 2022, 10(2), pp. 428-437. ISSN 2049-8470. eISSN 2049-8489. Available under: doi: 10.1017/psrm.2020.46

Zusammenfassung

When separation is a problem in binary dependent variable models, many researchers use Firth's penalized maximum likelihood in order to obtain finite estimates (Firth, 1993; Zorn, 2005; Rainey, 2016). In this paper, I show that this approach can lead to inferences in the opposite direction of the separation when the number of observations are sufficiently large and both the dependent and independent variables are rare events. As large datasets with rare events are frequently used in political science, such as dyadic data measuring interstate relations, a lack of awareness of this problem may lead to inferential issues. Simulations and an empirical illustration show that the use of independent “weakly-informative” prior distributions centered at zero, for example, the Cauchy prior suggested by Gelman et al. (2008), can avoid this issue. More generally, the results caution researchers to be aware of how the choice of prior interacts with the structure of their data, when estimating models in the presence of separation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Bayesian, categorical data analysis, discrete choice models

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BEISER-MCGRATH, Liam F., 2022. Separation and Rare Events. In: Political Science Research and Methods. Cambridge University Press. 2022, 10(2), pp. 428-437. ISSN 2049-8470. eISSN 2049-8489. Available under: doi: 10.1017/psrm.2020.46
BibTex
@article{BeiserMcGrath2022Separ-57342,
  year={2022},
  doi={10.1017/psrm.2020.46},
  title={Separation and Rare Events},
  number={2},
  volume={10},
  issn={2049-8470},
  journal={Political Science Research and Methods},
  pages={428--437},
  author={Beiser-McGrath, Liam F.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57342">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57342/1/Beiser-McGrath_2-xoos3thk4kg10.pdf"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-22T10:30:17Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-22T10:30:17Z</dcterms:available>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-sa/4.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57342"/>
    <dc:rights>Attribution-NonCommercial-ShareAlike 4.0 International</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:abstract xml:lang="eng">When separation is a problem in binary dependent variable models, many researchers use Firth's penalized maximum likelihood in order to obtain finite estimates (Firth, 1993; Zorn, 2005; Rainey, 2016). In this paper, I show that this approach can lead to inferences in the opposite direction of the separation when the number of observations are sufficiently large and both the dependent and independent variables are rare events. As large datasets with rare events are frequently used in political science, such as dyadic data measuring interstate relations, a lack of awareness of this problem may lead to inferential issues. Simulations and an empirical illustration show that the use of independent “weakly-informative” prior distributions centered at zero, for example, the Cauchy prior suggested by Gelman et al. (2008), can avoid this issue. More generally, the results caution researchers to be aware of how the choice of prior interacts with the structure of their data, when estimating models in the presence of separation.</dcterms:abstract>
    <dc:contributor>Beiser-McGrath, Liam F.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57342/1/Beiser-McGrath_2-xoos3thk4kg10.pdf"/>
    <dcterms:title>Separation and Rare Events</dcterms:title>
    <dc:creator>Beiser-McGrath, Liam F.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:issued>2022</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen