Publikation:

Infinite dimensional moment problem : open questions and applications

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BROGLIA, Fabrizio, ed. and others. Ordered algebraic structures and related topics. Providence, Rhode Island: American Mathematical Society, 2017, pp. 187-202. Contemporary mathematics. 697. ISBN 978-1-4704-2966-9. Available under: doi: 10.1090/conm/697

Zusammenfassung

Infinite dimensional moment problems have a long history in diverse applied areas dealing with the analysis of complex systems but progress is hindered by the lack of a general understanding of the mathematical structure behind them. Therefore, such problems have recently got great attention in real algebraic geometry also because of their deep connection to the finite dimensional case. In particular, our most recent collaboration with Murray Marshall and Mehdi Ghasemi about the infinite dimensional moment problem on symmetric algebras of locally convex spaces revealed intriguing questions and relations between real algebraic geometry, functional and harmonic analysis. Motivated by this promising interaction, the principal goal of this paper is to identify the main current challenges in the theory of the infinite dimensional moment problem and to highlight their impact in applied areas. The last advances achieved in this emerging field and briefly reviewed throughout this paper led us to several unsolved open questions which we outline here.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

International Conference on Ordered Algebraic Structures and Related Topics, 12. Okt. 2015 - 16. Okt. 2015, Luminy, France
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690INFUSINO, Maria, Salma KUHLMANN, 2017. Infinite dimensional moment problem : open questions and applications. International Conference on Ordered Algebraic Structures and Related Topics. Luminy, France, 12. Okt. 2015 - 16. Okt. 2015. In: BROGLIA, Fabrizio, ed. and others. Ordered algebraic structures and related topics. Providence, Rhode Island: American Mathematical Society, 2017, pp. 187-202. Contemporary mathematics. 697. ISBN 978-1-4704-2966-9. Available under: doi: 10.1090/conm/697
BibTex
@inproceedings{Infusino2017Infin-36840.2,
  year={2017},
  doi={10.1090/conm/697},
  title={Infinite dimensional moment problem : open questions and applications},
  number={697},
  isbn={978-1-4704-2966-9},
  publisher={American Mathematical Society},
  address={Providence, Rhode Island},
  series={Contemporary mathematics},
  booktitle={Ordered algebraic structures and related topics},
  pages={187--202},
  editor={Broglia, Fabrizio},
  author={Infusino, Maria and Kuhlmann, Salma}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36840.2">
    <dc:creator>Kuhlmann, Salma</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Infinite dimensional moment problems have a long history in diverse applied areas dealing with the analysis of complex systems but progress is hindered by the lack of a general understanding of the mathematical structure behind them. Therefore, such problems have recently got great attention in real algebraic geometry also because of their deep connection to the finite dimensional case. In particular, our most recent collaboration with Murray Marshall and Mehdi Ghasemi about the infinite dimensional moment problem on symmetric algebras of locally convex spaces revealed intriguing questions and relations between real algebraic geometry, functional and harmonic analysis. Motivated by this promising interaction, the principal goal of this paper is to identify the main current challenges in the theory of the infinite dimensional moment problem and to highlight their impact in applied areas. The last advances achieved in this emerging field and briefly reviewed throughout this paper led us to several unsolved open questions which we outline here.</dcterms:abstract>
    <dcterms:issued>2017</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36840.2"/>
    <dc:contributor>Kuhlmann, Salma</dc:contributor>
    <dc:creator>Infusino, Maria</dc:creator>
    <dcterms:title>Infinite dimensional moment problem : open questions and applications</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Infusino, Maria</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T12:14:02Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T12:14:02Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2018-02-06 12:08:24
2017-01-19 10:49:08
* Ausgewählte Version