Publikation: Infinite dimensional moment problem : open questions and applications
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Infinite dimensional moment problems have a long history in diverse applied areas dealing with the analysis of complex systems but progress is hindered by the lack of a general understanding of the mathematical structure behind them. Therefore, such problems have recently got great attention in real algebraic geometry also because of their deep connection to the finite dimensional case. In particular, our most recent collaboration with Murray Marshall and Mehdi Ghasemi about the infinite dimensional moment problem on symmetric algebras of locally convex spaces revealed intriguing questions and relations between real algebraic geometry, functional and harmonic analysis. Motivated by this promising interaction, the principal goal of this paper is to identify the main current challenges in the theory of the infinite dimensional moment problem and to highlight their impact in applied areas. The last advances achieved in this emerging field and briefly reviewed throughout this paper led us to several unsolved open questions which we outline here.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
INFUSINO, Maria, Salma KUHLMANN, 2017. Infinite dimensional moment problem : open questions and applications. International Conference on Ordered Algebraic Structures and Related Topics. Luminy, France, 12. Okt. 2015 - 16. Okt. 2015. In: BROGLIA, Fabrizio, ed. and others. Ordered algebraic structures and related topics. Providence, Rhode Island: American Mathematical Society, 2017, pp. 187-202. Contemporary mathematics. 697. ISBN 978-1-4704-2966-9. Available under: doi: 10.1090/conm/697BibTex
@inproceedings{Infusino2017Infin-36840.2, year={2017}, doi={10.1090/conm/697}, title={Infinite dimensional moment problem : open questions and applications}, number={697}, isbn={978-1-4704-2966-9}, publisher={American Mathematical Society}, address={Providence, Rhode Island}, series={Contemporary mathematics}, booktitle={Ordered algebraic structures and related topics}, pages={187--202}, editor={Broglia, Fabrizio}, author={Infusino, Maria and Kuhlmann, Salma} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36840.2"> <dc:creator>Kuhlmann, Salma</dc:creator> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Infinite dimensional moment problems have a long history in diverse applied areas dealing with the analysis of complex systems but progress is hindered by the lack of a general understanding of the mathematical structure behind them. Therefore, such problems have recently got great attention in real algebraic geometry also because of their deep connection to the finite dimensional case. In particular, our most recent collaboration with Murray Marshall and Mehdi Ghasemi about the infinite dimensional moment problem on symmetric algebras of locally convex spaces revealed intriguing questions and relations between real algebraic geometry, functional and harmonic analysis. Motivated by this promising interaction, the principal goal of this paper is to identify the main current challenges in the theory of the infinite dimensional moment problem and to highlight their impact in applied areas. The last advances achieved in this emerging field and briefly reviewed throughout this paper led us to several unsolved open questions which we outline here.</dcterms:abstract> <dcterms:issued>2017</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36840.2"/> <dc:contributor>Kuhlmann, Salma</dc:contributor> <dc:creator>Infusino, Maria</dc:creator> <dcterms:title>Infinite dimensional moment problem : open questions and applications</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Infusino, Maria</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T12:14:02Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T12:14:02Z</dc:date> </rdf:Description> </rdf:RDF>