Publikation: The Cauchy Problem for Thermoelastic Plates with Two Temperatures
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider the decay rates of solutions to thermoelastic systems in materials where, in contrast to classical thermoelastic models for Kirchhoff type plates, two temperatures are involved, related by an elliptic equation. The arising initial value problems deal with systems of partial differential equations involving Schr ödinger like equations, hyperbolic and elliptic equations. Depending on the model – with Fourier or with Cattaneo type heat conduction – we obtain polynomial decay rates without or with regularity loss. This way we obtain another example where the loss of regularity in the Cauchy problem corresponds to the loss of exponential stability in bounded domains. The well-posedness is done using semigroup theory in appropriate space reflecting the different regularity compared to the classical single temperature case, and the (optimal) decay estimates are obtained with sophisticated pointwise estimates in Fourier space.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RACKE, Reinhard, Yoshihiro UEDA, 2020. The Cauchy Problem for Thermoelastic Plates with Two Temperatures. In: Zeitschrift für Analysis und ihre Anwendungen. European Mathematical Society (EMS). 2020, 39(1), pp. 103-129. ISSN 0232-2064. eISSN 1661-4534. Available under: doi: 10.4171/ZAA/1653BibTex
@article{Racke2020Cauch-45403.2, year={2020}, doi={10.4171/ZAA/1653}, title={The Cauchy Problem for Thermoelastic Plates with Two Temperatures}, number={1}, volume={39}, issn={0232-2064}, journal={Zeitschrift für Analysis und ihre Anwendungen}, pages={103--129}, author={Racke, Reinhard and Ueda, Yoshihiro} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45403.2"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Ueda, Yoshihiro</dc:contributor> <dcterms:abstract xml:lang="eng">We consider the decay rates of solutions to thermoelastic systems in materials where, in contrast to classical thermoelastic models for Kirchhoff type plates, two temperatures are involved, related by an elliptic equation. The arising initial value problems deal with systems of partial differential equations involving Schr ödinger like equations, hyperbolic and elliptic equations. Depending on the model – with Fourier or with Cattaneo type heat conduction – we obtain polynomial decay rates without or with regularity loss. This way we obtain another example where the loss of regularity in the Cauchy problem corresponds to the loss of exponential stability in bounded domains. The well-posedness is done using semigroup theory in appropriate space reflecting the different regularity compared to the classical single temperature case, and the (optimal) decay estimates are obtained with sophisticated pointwise estimates in Fourier space.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Racke, Reinhard</dc:creator> <dc:language>eng</dc:language> <dc:creator>Ueda, Yoshihiro</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45403.2"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>The Cauchy Problem for Thermoelastic Plates with Two Temperatures</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2020</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-30T13:04:52Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-30T13:04:52Z</dcterms:available> <dc:contributor>Racke, Reinhard</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>