Publikation:

Existence and time-asymptotics of global strong solutions to dynamic Korteweg models

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Indiana University Mathematics Journal. 2014, 63(1), pp. 21-51. ISSN 0022-2518. eISSN 1943-5274. Available under: doi: 10.1512/iumj.2014.63.5187

Zusammenfassung

In this paper, we investigate isothermal and non-isothermal models of capillary compressible fluids as derived by J. E. Dunn and J. Serrin (1985). We establish global existence and uniqueness for initial data near equilibria, and show exponential stability of equilibrias in the phase space. The proof is based on maximal Lp-regularity results for the associated linear problem.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KOTSCHOTE, Matthias, 2014. Existence and time-asymptotics of global strong solutions to dynamic Korteweg models. In: Indiana University Mathematics Journal. 2014, 63(1), pp. 21-51. ISSN 0022-2518. eISSN 1943-5274. Available under: doi: 10.1512/iumj.2014.63.5187
BibTex
@article{Kotschote2014Exist-30157,
  year={2014},
  doi={10.1512/iumj.2014.63.5187},
  title={Existence and time-asymptotics of global strong solutions to dynamic Korteweg models},
  number={1},
  volume={63},
  issn={0022-2518},
  journal={Indiana University Mathematics Journal},
  pages={21--51},
  author={Kotschote, Matthias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30157">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Kotschote, Matthias</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">In this paper, we investigate isothermal and non-isothermal models of capillary compressible fluids as derived by J. E. Dunn and J. Serrin (1985). We establish global existence and uniqueness for initial data near equilibria, and show exponential stability of equilibrias in the phase space. The proof is based on maximal L&lt;sub&gt;p&lt;/sub&gt;-regularity results for the associated linear problem.</dcterms:abstract>
    <dc:contributor>Kotschote, Matthias</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-04T15:13:28Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Existence and time-asymptotics of global strong solutions to dynamic Korteweg models</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-04T15:13:28Z</dc:date>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30157"/>
    <dcterms:issued>2014</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen