Publikation: Interactive Context-Preserving Color Highlighting for Multiclass Scatterplots
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Color is one of the main visual channels used for highlighting elements of interest in visualization. However, in multi-class scatterplots, color highlighting often comes at the expense of degraded color discriminability. In this paper, we argue for context-preserving highlighting during the interactive exploration of multi-class scatterplots to achieve desired pop-out effects, while maintaining good perceptual separability among all classes and consistent color mapping schemes under varying points of interest. We do this by first generating two contrastive color mapping schemes with large and small contrasts to the background. Both schemes maintain good perceptual separability among all classes and ensure that when colors from the two palettes are assigned to the same class, they have a high color consistency in color names. We then interactively combine these two schemes to create a dynamic color mapping for highlighting different points of interest. We demonstrate the effectiveness through crowd-sourced experiments and case studies.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LU, Kecheng, Khairi REDA, Oliver DEUSSEN, Yunhai WANG, 2023. Interactive Context-Preserving Color Highlighting for Multiclass Scatterplots. CHI '23: CHI Conference on Human Factors in Computing Systems. Hamburg, Germany, 23. Apr. 2023 - 28. Apr. 2023. In: SCHMIDT, Albrecht, ed., Kaisa VÄÄNÄNEN, ed., Tesh GOYAL, ed.. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. New York, NY: ACM, 2023, 823. ISBN 978-1-4503-9421-5. Available under: doi: 10.1145/3544548.3580734BibTex
@inproceedings{Lu2023-04-19Inter-67467, year={2023}, doi={10.1145/3544548.3580734}, title={Interactive Context-Preserving Color Highlighting for Multiclass Scatterplots}, isbn={978-1-4503-9421-5}, publisher={ACM}, address={New York, NY}, booktitle={Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems}, editor={Schmidt, Albrecht and Väänänen, Kaisa and Goyal, Tesh}, author={Lu, Kecheng and Reda, Khairi and Deussen, Oliver and Wang, Yunhai}, note={Article Number: 823} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67467"> <dc:creator>Wang, Yunhai</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Reda, Khairi</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67467/1/Lu_2-wyi6nnfudi2b8.pdf"/> <dc:language>eng</dc:language> <dc:creator>Deussen, Oliver</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Lu, Kecheng</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67467/1/Lu_2-wyi6nnfudi2b8.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67467"/> <dc:contributor>Deussen, Oliver</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-01T14:02:25Z</dcterms:available> <dc:creator>Lu, Kecheng</dc:creator> <dcterms:issued>2023-04-19</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-01T14:02:25Z</dc:date> <dcterms:abstract>Color is one of the main visual channels used for highlighting elements of interest in visualization. However, in multi-class scatterplots, color highlighting often comes at the expense of degraded color discriminability. In this paper, we argue for context-preserving highlighting during the interactive exploration of multi-class scatterplots to achieve desired pop-out effects, while maintaining good perceptual separability among all classes and consistent color mapping schemes under varying points of interest. We do this by first generating two contrastive color mapping schemes with large and small contrasts to the background. Both schemes maintain good perceptual separability among all classes and ensure that when colors from the two palettes are assigned to the same class, they have a high color consistency in color names. We then interactively combine these two schemes to create a dynamic color mapping for highlighting different points of interest. We demonstrate the effectiveness through crowd-sourced experiments and case studies.</dcterms:abstract> <dc:contributor>Wang, Yunhai</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Reda, Khairi</dc:creator> <dcterms:title>Interactive Context-Preserving Color Highlighting for Multiclass Scatterplots</dcterms:title> </rdf:Description> </rdf:RDF>