Publikation:

Link prediction with social vector clocks

Lade...
Vorschaubild

Dateien

Lee_248217.pdf
Lee_248217.pdfGröße: 603.56 KBDownloads: 332

Datum

2013

Autor:innen

Lee, Conrad
Cunningham, Padraig

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '13. New York, New York, USA: ACM Press, 2013, pp. 784-792. ISBN 978-1-4503-2174-7. Available under: doi: 10.1145/2487575.2487615

Zusammenfassung

State-of-the-art link prediction utilizes combinations of complex features derived from network panel data. We here show that computationally less expensive features can achieve the same performance in the common scenario in which the data is available as a sequence of interactions. Our features are based on social vector clocks, an adaptation of the vector-clock concept introduced in distributed computing to social interaction networks. In fact, our experiments suggest that by taking into account the order and spacing of interactions, social vector clocks exploit different aspects of link formation so that their combination with previous approaches yields the most accurate predictor to date.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

19th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '13, 11. Aug. 2013 - 14. Aug. 2013, Chicago, Illinois, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LEE, Conrad, Bobo NICK, Ulrik BRANDES, Padraig CUNNINGHAM, 2013. Link prediction with social vector clocks. 19th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '13. Chicago, Illinois, USA, 11. Aug. 2013 - 14. Aug. 2013. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '13. New York, New York, USA: ACM Press, 2013, pp. 784-792. ISBN 978-1-4503-2174-7. Available under: doi: 10.1145/2487575.2487615
BibTex
@inproceedings{Lee2013predi-24821,
  year={2013},
  doi={10.1145/2487575.2487615},
  title={Link prediction with social vector clocks},
  isbn={978-1-4503-2174-7},
  publisher={ACM Press},
  address={New York, New York, USA},
  booktitle={Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '13},
  pages={784--792},
  author={Lee, Conrad and Nick, Bobo and Brandes, Ulrik and Cunningham, Padraig}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24821">
    <dc:contributor>Cunningham, Padraig</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24821"/>
    <dcterms:bibliographicCitation>KDD'13 : The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining ; Chicago, IL, USA - August 11 - 14, 2013 / Inderjit S. Dhillon ... (eds.). - New York : ACM, 2013. - S. 784-792. - ISBN 978-1-4503-2174-7</dcterms:bibliographicCitation>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24821/1/Lee_248217.pdf"/>
    <dc:contributor>Brandes, Ulrik</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24821/1/Lee_248217.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Brandes, Ulrik</dc:creator>
    <dc:contributor>Nick, Bobo</dc:contributor>
    <dc:creator>Nick, Bobo</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-11T09:46:19Z</dc:date>
    <dcterms:abstract xml:lang="eng">State-of-the-art link prediction utilizes combinations of complex features derived from network panel data. We here show that computationally less expensive features can achieve the same performance in the common scenario in which the data is available as a sequence of interactions. Our features are based on social vector clocks, an adaptation of the vector-clock concept introduced in distributed computing to social interaction networks. In fact, our experiments suggest that by taking into account the order and spacing of interactions, social vector clocks exploit different aspects of link formation so that their combination with previous approaches yields the most accurate predictor to date.</dcterms:abstract>
    <dc:creator>Lee, Conrad</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-08-30T22:25:04Z</dcterms:available>
    <dc:creator>Cunningham, Padraig</dc:creator>
    <dcterms:issued>2013</dcterms:issued>
    <dc:contributor>Lee, Conrad</dc:contributor>
    <dcterms:title>Link prediction with social vector clocks</dcterms:title>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen