Publikation: Link prediction with social vector clocks
Lade...
Dateien
Datum
2013
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '13. New York, New York, USA: ACM Press, 2013, pp. 784-792. ISBN 978-1-4503-2174-7. Available under: doi: 10.1145/2487575.2487615
Zusammenfassung
State-of-the-art link prediction utilizes combinations of complex features derived from network panel data. We here show that computationally less expensive features can achieve the same performance in the common scenario in which the data is available as a sequence of interactions. Our features are based on social vector clocks, an adaptation of the vector-clock concept introduced in distributed computing to social interaction networks. In fact, our experiments suggest that by taking into account the order and spacing of interactions, social vector clocks exploit different aspects of link formation so that their combination with previous approaches yields the most accurate predictor to date.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
19th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '13, 11. Aug. 2013 - 14. Aug. 2013, Chicago, Illinois, USA
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
LEE, Conrad, Bobo NICK, Ulrik BRANDES, Padraig CUNNINGHAM, 2013. Link prediction with social vector clocks. 19th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '13. Chicago, Illinois, USA, 11. Aug. 2013 - 14. Aug. 2013. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '13. New York, New York, USA: ACM Press, 2013, pp. 784-792. ISBN 978-1-4503-2174-7. Available under: doi: 10.1145/2487575.2487615BibTex
@inproceedings{Lee2013predi-24821, year={2013}, doi={10.1145/2487575.2487615}, title={Link prediction with social vector clocks}, isbn={978-1-4503-2174-7}, publisher={ACM Press}, address={New York, New York, USA}, booktitle={Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '13}, pages={784--792}, author={Lee, Conrad and Nick, Bobo and Brandes, Ulrik and Cunningham, Padraig} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24821"> <dc:contributor>Cunningham, Padraig</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24821"/> <dcterms:bibliographicCitation>KDD'13 : The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining ; Chicago, IL, USA - August 11 - 14, 2013 / Inderjit S. Dhillon ... (eds.). - New York : ACM, 2013. - S. 784-792. - ISBN 978-1-4503-2174-7</dcterms:bibliographicCitation> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24821/1/Lee_248217.pdf"/> <dc:contributor>Brandes, Ulrik</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24821/1/Lee_248217.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Brandes, Ulrik</dc:creator> <dc:contributor>Nick, Bobo</dc:contributor> <dc:creator>Nick, Bobo</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-11T09:46:19Z</dc:date> <dcterms:abstract xml:lang="eng">State-of-the-art link prediction utilizes combinations of complex features derived from network panel data. We here show that computationally less expensive features can achieve the same performance in the common scenario in which the data is available as a sequence of interactions. Our features are based on social vector clocks, an adaptation of the vector-clock concept introduced in distributed computing to social interaction networks. In fact, our experiments suggest that by taking into account the order and spacing of interactions, social vector clocks exploit different aspects of link formation so that their combination with previous approaches yields the most accurate predictor to date.</dcterms:abstract> <dc:creator>Lee, Conrad</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-08-30T22:25:04Z</dcterms:available> <dc:creator>Cunningham, Padraig</dc:creator> <dcterms:issued>2013</dcterms:issued> <dc:contributor>Lee, Conrad</dc:contributor> <dcterms:title>Link prediction with social vector clocks</dcterms:title> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja