Publikation:

Diversity Driven Parallel Data Mining

Lade...
Vorschaubild

Dateien

Sampson_264633.pdf
Sampson_264633.pdfGröße: 1.19 MBDownloads: 531

Datum

2013

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

With increasing availability and power of parallel computational resources, attention is drawn to the question of how best to apply those resources. Instead of simply finding the same answers more quickly, this thesis describes how parallel computational resources are used to explore disparate regions of a solution space by using diversity to steer the solution paths away from each other, thereby discouraging strictly greedy behavior. The formulation of models in a concept/solution space and its relationship to a search space are described as well as common search algorithms with heuristics for time or space computationally prohibitive searches. Measures of diversity are introduced, and the application of a beam search to the solution space for the Krimp algorithm for frequent itemset mining is described. Experimental results show that it is indeed possible to get better results on real-world datasets with these methods.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Krimp, Itemset Mining, Data Mining

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SAMPSON, Oliver R., 2013. Diversity Driven Parallel Data Mining [Master thesis]
BibTex
@mastersthesis{Sampson2013Diver-26463,
  year={2013},
  title={Diversity Driven Parallel Data Mining},
  author={Sampson, Oliver R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26463">
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Sampson, Oliver R.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-07T09:12:38Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26463/2/Sampson_264633.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26463/2/Sampson_264633.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-07T09:12:38Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26463"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">With increasing availability and power of parallel computational resources, attention is drawn to the question of how best to apply those resources. Instead of simply finding the same answers more quickly, this thesis describes how parallel computational resources are used to explore disparate regions of a solution space by using diversity to steer the solution paths away from each other, thereby discouraging strictly greedy behavior. The formulation of models in a concept/solution space and its relationship to a search space are described as well as common search algorithms with heuristics for time or space computationally prohibitive searches. Measures of diversity are introduced, and the application of a beam search to the solution space for the Krimp algorithm for frequent itemset mining is described. Experimental results show that it is indeed possible to get better results on real-world datasets with these methods.</dcterms:abstract>
    <dc:contributor>Sampson, Oliver R.</dc:contributor>
    <dcterms:issued>2013</dcterms:issued>
    <dcterms:title>Diversity Driven Parallel Data Mining</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen