Publikation:

Forecasting Aggregates with Disaggregate Variables : Does Boosting Help to Select the Most Relevant Predictors?

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Forecasting and Structural Analysis with Contemporaneous Aggregates of Time Series Data
Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Forecasting. 2017, 36(1), pp. 74-90. ISSN 0277-6693. eISSN 1099-131X. Available under: doi: 10.1002/for.2415

Zusammenfassung

Including disaggregate variables or using information extracted from the disaggregate variables into a forecasting model for an economic aggregate may improve the forecasting accuracy. In this paper we suggest to use the boosting method to select the disaggregate variables which are most helpful in predicting an aggregate of interest. We conduct a simulation study to investigate the variable selection ability of this method. To assess the forecasting performance a recursive pseudo-out-of-sample forecasting experiment for six key Euro area macroeconomic variables is conducted. The results suggest that using boosting to select relevant predictors is a feasible and competitive approach in forecasting an aggregate.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

aggregation, macroeconomic forecasting, componentwise boosting, factor analysis

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ZENG, Jing, 2017. Forecasting Aggregates with Disaggregate Variables : Does Boosting Help to Select the Most Relevant Predictors?. In: Journal of Forecasting. 2017, 36(1), pp. 74-90. ISSN 0277-6693. eISSN 1099-131X. Available under: doi: 10.1002/for.2415
BibTex
@article{Zeng2017Forec-29225,
  year={2017},
  doi={10.1002/for.2415},
  title={Forecasting Aggregates with Disaggregate Variables :  Does Boosting Help to Select the Most Relevant Predictors?},
  number={1},
  volume={36},
  issn={0277-6693},
  journal={Journal of Forecasting},
  pages={74--90},
  author={Zeng, Jing}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29225">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/29225"/>
    <dcterms:title>Forecasting Aggregates with Disaggregate Variables :  Does Boosting Help to Select the Most Relevant Predictors?</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-02T08:40:44Z</dc:date>
    <dcterms:abstract xml:lang="eng">Including disaggregate variables or using information extracted from the disaggregate variables into a forecasting model for an economic aggregate may improve the forecasting accuracy. In this paper we suggest to use the boosting method to select the disaggregate variables which are most helpful in predicting an aggregate of interest. We conduct a simulation study to investigate the variable selection ability of this method. To assess the forecasting performance a recursive pseudo-out-of-sample forecasting experiment for six key Euro area macroeconomic variables is conducted. The results suggest that using boosting to select relevant predictors is a feasible and competitive approach in forecasting an aggregate.</dcterms:abstract>
    <dc:contributor>Zeng, Jing</dc:contributor>
    <dc:creator>Zeng, Jing</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:issued>2017</dcterms:issued>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-02T08:40:44Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2016-02-02 08:38:20
2014-11-06 13:17:46
* Ausgewählte Version