Publikation: Rapid Identification of Aphid Species by Headspace GC-MS and Discriminant Analysis
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Aphids are a ubiquitous group of pests in agriculture that cause serious losses. For sustainable aphid identification, it is necessary to develop a precise and fast aphid identification tool. A new simple chemotaxonomy approach to rapidly identify aphids was implemented. The method was calibrated in comparison to the established phylogenetic analysis. For chemotaxonomic analysis, aphids were crushed, their headspace compounds were collected through closed-loop stripping (CLS) and analysed using gas chromatography—mass spectrometry (GC-MS). GC-MS data were then subjected to a discriminant analysis using CAP12.exe software, which identified key biomarkers that distinguish aphid species. A dichotomous key taking into account the presence and absence of a set of species-specific biomarkers was derived from the discriminant analysis which enabled rapid and reliable identification of aphid species. As the method overcomes the limits of morphological identification, it works with aphids at all life stages and in both genders. Thus, our method enables entomologists to assign aphids to growth stages and identify the life history of the investigated aphids, i.e., the food plant(s) they fed on. Our experiments clearly showed that the method could be used as a software to automatically identify aphids.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ALOTAIBI, Noura J., Taghreed ALSUFYANI, Nour Houda M’SAKNI, Mona A. ALMALKI, Eman M. ALGHAMDI, Dieter SPITELLER, 2023. Rapid Identification of Aphid Species by Headspace GC-MS and Discriminant Analysis. In: Insects. MDPI. 2023, 14(7), 589. eISSN 2075-4450. Available under: doi: 10.3390/insects14070589BibTex
@article{Alotaibi2023Rapid-67292, year={2023}, doi={10.3390/insects14070589}, title={Rapid Identification of Aphid Species by Headspace GC-MS and Discriminant Analysis}, number={7}, volume={14}, journal={Insects}, author={Alotaibi, Noura J. and Alsufyani, Taghreed and M’sakni, Nour Houda and Almalki, Mona A. and Alghamdi, Eman M. and Spiteller, Dieter}, note={Article Number: 589} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67292"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Alghamdi, Eman M.</dc:contributor> <dc:creator>M’sakni, Nour Houda</dc:creator> <dcterms:title>Rapid Identification of Aphid Species by Headspace GC-MS and Discriminant Analysis</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-03T13:44:12Z</dc:date> <dc:contributor>Alsufyani, Taghreed</dc:contributor> <dc:contributor>M’sakni, Nour Houda</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Almalki, Mona A.</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67292"/> <dc:creator>Alghamdi, Eman M.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-03T13:44:12Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:abstract>Aphids are a ubiquitous group of pests in agriculture that cause serious losses. For sustainable aphid identification, it is necessary to develop a precise and fast aphid identification tool. A new simple chemotaxonomy approach to rapidly identify aphids was implemented. The method was calibrated in comparison to the established phylogenetic analysis. For chemotaxonomic analysis, aphids were crushed, their headspace compounds were collected through closed-loop stripping (CLS) and analysed using gas chromatography—mass spectrometry (GC-MS). GC-MS data were then subjected to a discriminant analysis using CAP12.exe software, which identified key biomarkers that distinguish aphid species. A dichotomous key taking into account the presence and absence of a set of species-specific biomarkers was derived from the discriminant analysis which enabled rapid and reliable identification of aphid species. As the method overcomes the limits of morphological identification, it works with aphids at all life stages and in both genders. Thus, our method enables entomologists to assign aphids to growth stages and identify the life history of the investigated aphids, i.e., the food plant(s) they fed on. Our experiments clearly showed that the method could be used as a software to automatically identify aphids.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67292/1/Alotaibi_2-vogb5uop8hax8.pdf"/> <dc:creator>Alotaibi, Noura J.</dc:creator> <dc:contributor>Spiteller, Dieter</dc:contributor> <dcterms:issued>2023</dcterms:issued> <dc:contributor>Almalki, Mona A.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67292/1/Alotaibi_2-vogb5uop8hax8.pdf"/> <dc:contributor>Alotaibi, Noura J.</dc:contributor> <dc:creator>Alsufyani, Taghreed</dc:creator> <dc:creator>Spiteller, Dieter</dc:creator> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>