Publikation: Computing Optimal Joint Chance Constrained Control Policies
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2025
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
European Union (EU): 787845
Swiss National Science Foundation: 51NF40_225155
Swiss National Science Foundation: 51NF40_225155
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IEEE Transactions on Automatic Control. IEEE. 2025, 70(7), S. 4904-4911. ISSN 0018-9286. eISSN 1558-2523. Verfügbar unter: doi: 10.1109/tac.2025.3546078
Zusammenfassung
We consider the problem of optimally controlling stochastic, Markovian systems subject to joint chance constraints over a finite-time horizon. For such problems, standard dynamic programming is inapplicable due to the time correlation of the joint chance constraints, which calls for non-Markovian, and possibly stochastic, policies. Hence, despite the popularity of this problem, solution approaches capable of providing provably optimal and easy-to-compute policies are still missing. We fill this gap by augmenting the dynamics via a binary state, allowing us to characterize the optimal policies and develop a dynamic programming-based solution method.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Dynamic programming (DP), joint chance constrained programming, stochastic optimal control
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SCHMID, Niklas, Marta FOCHESATO, Sarah H.Q. LI, Tobias SUTTER, John LYGEROS, 2025. Computing Optimal Joint Chance Constrained Control Policies. In: IEEE Transactions on Automatic Control. IEEE. 2025, 70(7), S. 4904-4911. ISSN 0018-9286. eISSN 1558-2523. Verfügbar unter: doi: 10.1109/tac.2025.3546078BibTex
@article{Schmid2025-07Compu-73956,
title={Computing Optimal Joint Chance Constrained Control Policies},
year={2025},
doi={10.1109/tac.2025.3546078},
number={7},
volume={70},
issn={0018-9286},
journal={IEEE Transactions on Automatic Control},
pages={4904--4911},
author={Schmid, Niklas and Fochesato, Marta and Li, Sarah H.Q. and Sutter, Tobias and Lygeros, John}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73956">
<dc:contributor>Li, Sarah H.Q.</dc:contributor>
<dcterms:issued>2025-07</dcterms:issued>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-15T07:46:33Z</dc:date>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73956"/>
<dc:contributor>Lygeros, John</dc:contributor>
<dc:contributor>Fochesato, Marta</dc:contributor>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
<dc:creator>Fochesato, Marta</dc:creator>
<dc:creator>Li, Sarah H.Q.</dc:creator>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-15T07:46:33Z</dcterms:available>
<dcterms:abstract>We consider the problem of optimally controlling stochastic, Markovian systems subject to joint chance constraints over a finite-time horizon. For such problems, standard dynamic programming is inapplicable due to the time correlation of the joint chance constraints, which calls for non-Markovian, and possibly stochastic, policies. Hence, despite the popularity of this problem, solution approaches capable of providing provably optimal and easy-to-compute policies are still missing. We fill this gap by augmenting the dynamics via a binary state, allowing us to characterize the optimal policies and develop a dynamic programming-based solution method.</dcterms:abstract>
<dc:language>eng</dc:language>
<dc:creator>Schmid, Niklas</dc:creator>
<dc:creator>Lygeros, John</dc:creator>
<dc:creator>Sutter, Tobias</dc:creator>
<dc:contributor>Schmid, Niklas</dc:contributor>
<dcterms:title>Computing Optimal Joint Chance Constrained Control Policies</dcterms:title>
<dc:contributor>Sutter, Tobias</dc:contributor>
</rdf:Description>
</rdf:RDF>Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja