Publikation:

Computing Optimal Joint Chance Constrained Control Policies

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2025

Autor:innen

Schmid, Niklas
Fochesato, Marta
Li, Sarah H.Q.
Lygeros, John

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 787845
Swiss National Science Foundation: 51NF40_225155

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Automatic Control. IEEE. 2025, 70(7), S. 4904-4911. ISSN 0018-9286. eISSN 1558-2523. Verfügbar unter: doi: 10.1109/tac.2025.3546078

Zusammenfassung

We consider the problem of optimally controlling stochastic, Markovian systems subject to joint chance constraints over a finite-time horizon. For such problems, standard dynamic programming is inapplicable due to the time correlation of the joint chance constraints, which calls for non-Markovian, and possibly stochastic, policies. Hence, despite the popularity of this problem, solution approaches capable of providing provably optimal and easy-to-compute policies are still missing. We fill this gap by augmenting the dynamics via a binary state, allowing us to characterize the optimal policies and develop a dynamic programming-based solution method.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Dynamic programming (DP), joint chance constrained programming, stochastic optimal control

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHMID, Niklas, Marta FOCHESATO, Sarah H.Q. LI, Tobias SUTTER, John LYGEROS, 2025. Computing Optimal Joint Chance Constrained Control Policies. In: IEEE Transactions on Automatic Control. IEEE. 2025, 70(7), S. 4904-4911. ISSN 0018-9286. eISSN 1558-2523. Verfügbar unter: doi: 10.1109/tac.2025.3546078
BibTex
@article{Schmid2025-07Compu-73956,
  title={Computing Optimal Joint Chance Constrained Control Policies},
  year={2025},
  doi={10.1109/tac.2025.3546078},
  number={7},
  volume={70},
  issn={0018-9286},
  journal={IEEE Transactions on Automatic Control},
  pages={4904--4911},
  author={Schmid, Niklas and Fochesato, Marta and Li, Sarah H.Q. and Sutter, Tobias and Lygeros, John}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73956">
    <dc:contributor>Li, Sarah H.Q.</dc:contributor>
    <dcterms:issued>2025-07</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-15T07:46:33Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73956"/>
    <dc:contributor>Lygeros, John</dc:contributor>
    <dc:contributor>Fochesato, Marta</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Fochesato, Marta</dc:creator>
    <dc:creator>Li, Sarah H.Q.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-15T07:46:33Z</dcterms:available>
    <dcterms:abstract>We consider the problem of optimally controlling stochastic, Markovian systems subject to joint chance constraints over a finite-time horizon. For such problems, standard dynamic programming is inapplicable due to the time correlation of the joint chance constraints, which calls for non-Markovian, and possibly stochastic, policies. Hence, despite the popularity of this problem, solution approaches capable of providing provably optimal and easy-to-compute policies are still missing. We fill this gap by augmenting the dynamics via a binary state, allowing us to characterize the optimal policies and develop a dynamic programming-based solution method.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:creator>Schmid, Niklas</dc:creator>
    <dc:creator>Lygeros, John</dc:creator>
    <dc:creator>Sutter, Tobias</dc:creator>
    <dc:contributor>Schmid, Niklas</dc:contributor>
    <dcterms:title>Computing Optimal Joint Chance Constrained Control Policies</dcterms:title>
    <dc:contributor>Sutter, Tobias</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen