Stability in Spatial Voting Games with Restricted Preference Maximizing
Stability in Spatial Voting Games with Restricted Preference Maximizing
Lade...
Datum
2007
Autor:innen
Bräuninger, Thomas
Herausgeber:innen
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Erschienen in
Journal of Theoretical Politics ; 19 (2007), 2. - S. 173-191
Zusammenfassung
Spatial models of simple majority rule voting suggest that stable decisions are not likely to exist under normal circumstances. Yet this instability result stands in contrast to the stability observed in experiments. This article examines the effect of relaxing the assumption that voting is costless by requiring a proposal to be a finite distance closer to a member s ideal point than the pending proposal before it is regarded as attractive. Using the concept of the epsilon-core the article estimates the minimal decision costs that guarantee stable outcomes. It shows that the minimal costs are equal to the minimal finagle radius (Wuffle et al., 1989) and that the epsilon-core contains the finagle point which is close to the center of the yolk. While the analytical model establishes that the minimal costs are smaller than the yolk radius, computational simulations of majority voting by committees of size 3 to 101 suggest that this is a weak upper bound, only, as the ratio of minimal costs to the yolk radius usually is small and decreases as committee size approaches infinity.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
320 Politik
Schlagwörter
decision costs,epsilon-core,stability,spatial voting models
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690
BRÄUNINGER, Thomas, 2007. Stability in Spatial Voting Games with Restricted Preference Maximizing. In: Journal of Theoretical Politics. 19(2), pp. 173-191. Available under: doi: 10.1177/0951629807074275BibTex
@article{Brauninger2007Stabi-3967, year={2007}, doi={10.1177/0951629807074275}, title={Stability in Spatial Voting Games with Restricted Preference Maximizing}, number={2}, volume={19}, journal={Journal of Theoretical Politics}, pages={173--191}, author={Bräuninger, Thomas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/3967"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/3967/1/Stability_Braeuninger_2007.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T10:09:49Z</dcterms:available> <dcterms:issued>2007</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/3967"/> <dcterms:bibliographicCitation>First publ. in: Journal of Theoretical Politics 19 (2007), 2, pp. 173-191</dcterms:bibliographicCitation> <dcterms:abstract xml:lang="eng">Spatial models of simple majority rule voting suggest that stable decisions are not likely to exist under normal circumstances. Yet this instability result stands in contrast to the stability observed in experiments. This article examines the effect of relaxing the assumption that voting is costless by requiring a proposal to be a finite distance closer to a member s ideal point than the pending proposal before it is regarded as attractive. Using the concept of the epsilon-core the article estimates the minimal decision costs that guarantee stable outcomes. It shows that the minimal costs are equal to the minimal finagle radius (Wuffle et al., 1989) and that the epsilon-core contains the finagle point which is close to the center of the yolk. While the analytical model establishes that the minimal costs are smaller than the yolk radius, computational simulations of majority voting by committees of size 3 to 101 suggest that this is a weak upper bound, only, as the ratio of minimal costs to the yolk radius usually is small and decreases as committee size approaches infinity.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:format>application/pdf</dc:format> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Stability in Spatial Voting Games with Restricted Preference Maximizing</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:contributor>Bräuninger, Thomas</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T10:09:49Z</dc:date> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/3967/1/Stability_Braeuninger_2007.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:creator>Bräuninger, Thomas</dc:creator> </rdf:Description> </rdf:RDF>