Publikation:

Crowdsourced Quality Assessment of Enhanced Underwater Images : a Pilot Study

Lade...
Vorschaubild

Dateien

Lin_2-v4lps4kknez52.pdf
Lin_2-v4lps4kknez52.pdfGröße: 3.51 MBDownloads: 97

Datum

2022

Autor:innen

Yan, Yijun
Ren, Jinchang

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2022 14th International Conference on Quality of Multimedia Experience (QoMEX). Piscataway, NJ: IEEE, 2022. ISBN 978-1-66548-794-8. Available under: doi: 10.1109/QoMEX55416.2022.9900904

Zusammenfassung

Underwater image enhancement (UIE) is essential for a high-quality underwater optical imaging system. While a number of UIE algorithms have been proposed in recent years, there is little study on image quality assessment (IQA) of enhanced underwater images. In this paper, we conduct the first crowdsourced subjective IQA study on enhanced underwater images. We chose ten state-of-the-art UIE algorithms and applied them to yield enhanced images from an underwater image benchmark. Their latent quality scales were reconstructed from pair comparison. We demonstrate that the existing IQA metrics are not suitable for assessing the perceived quality of enhanced underwater images. In addition, the overall performance of 10 UIE algorithms on the benchmark is ranked by the newly proposed simulated pair comparison of the methods.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

14th International Conference on Quality of Multimedia Experience (QoMEX), 5. Sept. 2022 - 7. Sept. 2022, Lippstadt
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LIN, Hanhe, Hui MEN, Yijun YAN, Jinchang REN, Dietmar SAUPE, 2022. Crowdsourced Quality Assessment of Enhanced Underwater Images : a Pilot Study. 14th International Conference on Quality of Multimedia Experience (QoMEX). Lippstadt, 5. Sept. 2022 - 7. Sept. 2022. In: 2022 14th International Conference on Quality of Multimedia Experience (QoMEX). Piscataway, NJ: IEEE, 2022. ISBN 978-1-66548-794-8. Available under: doi: 10.1109/QoMEX55416.2022.9900904
BibTex
@inproceedings{Lin2022Crowd-58777,
  year={2022},
  doi={10.1109/QoMEX55416.2022.9900904},
  title={Crowdsourced Quality Assessment of Enhanced Underwater Images : a Pilot Study},
  isbn={978-1-66548-794-8},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2022 14th International Conference on Quality of Multimedia Experience (QoMEX)},
  author={Lin, Hanhe and Men, Hui and Yan, Yijun and Ren, Jinchang and Saupe, Dietmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58777">
    <dc:creator>Men, Hui</dc:creator>
    <dc:contributor>Ren, Jinchang</dc:contributor>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Ren, Jinchang</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Men, Hui</dc:contributor>
    <dc:creator>Lin, Hanhe</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-10-10T08:22:45Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58777"/>
    <dc:contributor>Lin, Hanhe</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Crowdsourced Quality Assessment of Enhanced Underwater Images : a Pilot Study</dcterms:title>
    <dc:creator>Yan, Yijun</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58777/1/Lin_2-v4lps4kknez52.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58777/1/Lin_2-v4lps4kknez52.pdf"/>
    <dc:contributor>Yan, Yijun</dc:contributor>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Underwater image enhancement (UIE) is essential for a high-quality underwater optical imaging system. While a number of UIE algorithms have been proposed in recent years, there is little study on image quality assessment (IQA) of enhanced underwater images. In this paper, we conduct the first crowdsourced subjective IQA study on enhanced underwater images. We chose ten state-of-the-art UIE algorithms and applied them to yield enhanced images from an underwater image benchmark. Their latent quality scales were reconstructed from pair comparison. We demonstrate that the existing IQA metrics are not suitable for assessing the perceived quality of enhanced underwater images. In addition, the overall performance of 10 UIE algorithms on the benchmark is ranked by the newly proposed simulated pair comparison of the methods.</dcterms:abstract>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-10-10T08:22:45Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen