Publikation: Crowdsourced Quality Assessment of Enhanced Underwater Images : a Pilot Study
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Underwater image enhancement (UIE) is essential for a high-quality underwater optical imaging system. While a number of UIE algorithms have been proposed in recent years, there is little study on image quality assessment (IQA) of enhanced underwater images. In this paper, we conduct the first crowdsourced subjective IQA study on enhanced underwater images. We chose ten state-of-the-art UIE algorithms and applied them to yield enhanced images from an underwater image benchmark. Their latent quality scales were reconstructed from pair comparison. We demonstrate that the existing IQA metrics are not suitable for assessing the perceived quality of enhanced underwater images. In addition, the overall performance of 10 UIE algorithms on the benchmark is ranked by the newly proposed simulated pair comparison of the methods.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LIN, Hanhe, Hui MEN, Yijun YAN, Jinchang REN, Dietmar SAUPE, 2022. Crowdsourced Quality Assessment of Enhanced Underwater Images : a Pilot Study. 14th International Conference on Quality of Multimedia Experience (QoMEX). Lippstadt, 5. Sept. 2022 - 7. Sept. 2022. In: 2022 14th International Conference on Quality of Multimedia Experience (QoMEX). Piscataway, NJ: IEEE, 2022. ISBN 978-1-66548-794-8. Available under: doi: 10.1109/QoMEX55416.2022.9900904BibTex
@inproceedings{Lin2022Crowd-58777, year={2022}, doi={10.1109/QoMEX55416.2022.9900904}, title={Crowdsourced Quality Assessment of Enhanced Underwater Images : a Pilot Study}, isbn={978-1-66548-794-8}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2022 14th International Conference on Quality of Multimedia Experience (QoMEX)}, author={Lin, Hanhe and Men, Hui and Yan, Yijun and Ren, Jinchang and Saupe, Dietmar} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58777"> <dc:creator>Men, Hui</dc:creator> <dc:contributor>Ren, Jinchang</dc:contributor> <dc:creator>Saupe, Dietmar</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Ren, Jinchang</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Men, Hui</dc:contributor> <dc:creator>Lin, Hanhe</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-10-10T08:22:45Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58777"/> <dc:contributor>Lin, Hanhe</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dcterms:title>Crowdsourced Quality Assessment of Enhanced Underwater Images : a Pilot Study</dcterms:title> <dc:creator>Yan, Yijun</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58777/1/Lin_2-v4lps4kknez52.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58777/1/Lin_2-v4lps4kknez52.pdf"/> <dc:contributor>Yan, Yijun</dc:contributor> <dc:contributor>Saupe, Dietmar</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Underwater image enhancement (UIE) is essential for a high-quality underwater optical imaging system. While a number of UIE algorithms have been proposed in recent years, there is little study on image quality assessment (IQA) of enhanced underwater images. In this paper, we conduct the first crowdsourced subjective IQA study on enhanced underwater images. We chose ten state-of-the-art UIE algorithms and applied them to yield enhanced images from an underwater image benchmark. Their latent quality scales were reconstructed from pair comparison. We demonstrate that the existing IQA metrics are not suitable for assessing the perceived quality of enhanced underwater images. In addition, the overall performance of 10 UIE algorithms on the benchmark is ranked by the newly proposed simulated pair comparison of the methods.</dcterms:abstract> <dcterms:issued>2022</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-10-10T08:22:45Z</dcterms:available> </rdf:Description> </rdf:RDF>