Crowdsourced Quality Assessment of Enhanced Underwater Images : a Pilot Study

Lade...
Vorschaubild
Dateien
Lin_2-v4lps4kknez52.pdf
Lin_2-v4lps4kknez52.pdfGröße: 3.51 MBDownloads: 83
Datum
2022
Autor:innen
Yan, Yijun
Ren, Jinchang
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
2022 14th International Conference on Quality of Multimedia Experience (QoMEX). Piscataway, NJ: IEEE, 2022. ISBN 978-1-66548-794-8. Available under: doi: 10.1109/QoMEX55416.2022.9900904
Zusammenfassung

Underwater image enhancement (UIE) is essential for a high-quality underwater optical imaging system. While a number of UIE algorithms have been proposed in recent years, there is little study on image quality assessment (IQA) of enhanced underwater images. In this paper, we conduct the first crowdsourced subjective IQA study on enhanced underwater images. We chose ten state-of-the-art UIE algorithms and applied them to yield enhanced images from an underwater image benchmark. Their latent quality scales were reconstructed from pair comparison. We demonstrate that the existing IQA metrics are not suitable for assessing the perceived quality of enhanced underwater images. In addition, the overall performance of 10 UIE algorithms on the benchmark is ranked by the newly proposed simulated pair comparison of the methods.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
14th International Conference on Quality of Multimedia Experience (QoMEX), 5. Sept. 2022 - 7. Sept. 2022, Lippstadt
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690LIN, Hanhe, Hui MEN, Yijun YAN, Jinchang REN, Dietmar SAUPE, 2022. Crowdsourced Quality Assessment of Enhanced Underwater Images : a Pilot Study. 14th International Conference on Quality of Multimedia Experience (QoMEX). Lippstadt, 5. Sept. 2022 - 7. Sept. 2022. In: 2022 14th International Conference on Quality of Multimedia Experience (QoMEX). Piscataway, NJ: IEEE, 2022. ISBN 978-1-66548-794-8. Available under: doi: 10.1109/QoMEX55416.2022.9900904
BibTex
@inproceedings{Lin2022Crowd-58777,
  year={2022},
  doi={10.1109/QoMEX55416.2022.9900904},
  title={Crowdsourced Quality Assessment of Enhanced Underwater Images : a Pilot Study},
  isbn={978-1-66548-794-8},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2022 14th International Conference on Quality of Multimedia Experience (QoMEX)},
  author={Lin, Hanhe and Men, Hui and Yan, Yijun and Ren, Jinchang and Saupe, Dietmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58777">
    <dc:creator>Men, Hui</dc:creator>
    <dc:contributor>Ren, Jinchang</dc:contributor>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Ren, Jinchang</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Men, Hui</dc:contributor>
    <dc:creator>Lin, Hanhe</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-10-10T08:22:45Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58777"/>
    <dc:contributor>Lin, Hanhe</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Crowdsourced Quality Assessment of Enhanced Underwater Images : a Pilot Study</dcterms:title>
    <dc:creator>Yan, Yijun</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58777/1/Lin_2-v4lps4kknez52.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58777/1/Lin_2-v4lps4kknez52.pdf"/>
    <dc:contributor>Yan, Yijun</dc:contributor>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Underwater image enhancement (UIE) is essential for a high-quality underwater optical imaging system. While a number of UIE algorithms have been proposed in recent years, there is little study on image quality assessment (IQA) of enhanced underwater images. In this paper, we conduct the first crowdsourced subjective IQA study on enhanced underwater images. We chose ten state-of-the-art UIE algorithms and applied them to yield enhanced images from an underwater image benchmark. Their latent quality scales were reconstructed from pair comparison. We demonstrate that the existing IQA metrics are not suitable for assessing the perceived quality of enhanced underwater images. In addition, the overall performance of 10 UIE algorithms on the benchmark is ranked by the newly proposed simulated pair comparison of the methods.</dcterms:abstract>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-10-10T08:22:45Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen