Publikation:

Status and perspectives of crystalline silicon photovoltaics in research and industry

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2022

Autor:innen

Ballif, Christophe
Haug, Franz-Josef
Boccard, Mathieu
Verlinden, Pierre J.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Nature Reviews Materials. Nature Publishing Group. 2022, 7(8), pp. 597-616. eISSN 2058-8437. Available under: doi: 10.1038/s41578-022-00423-2

Zusammenfassung

Crystalline silicon (c-Si) photovoltaics has long been considered energy intensive and costly. Over the past decades, spectacular improvements along the manufacturing chain have made c-Si a low-cost source of electricity that can no longer be ignored. Over 125 GW of c-Si modules have been installed in 2020, 95% of the overall photovoltaic (PV) market, and over 700 GW has been cumulatively installed. There are some strong indications that c-Si photovoltaics could become the most important world electricity source by 2040–2050. In this Review, we survey the key changes related to materials and industrial processing of silicon PV components. At the wafer level, a strong reduction in polysilicon cost and the general implementation of diamond wire sawing has reduced the cost of monocrystalline wafers. In parallel, the concentration of impurities and electronic defects in the various types of wafers has been reduced, allowing for high efficiency in industrial devices. Improved cleanliness in production lines, increased tool automation and improved production technology and cell architectures all helped to increase the efficiency of mainstream modules. Efficiency gains at the cell level were accompanied by an increase in wafer size and by the introduction of advanced assembly techniques. These improvements have allowed a reduction of cell-to-module efficiency losses and will accelerate the yearly efficiency gain of mainstream modules. To conclude, we discuss what it will take for other PV technologies to compete with silicon on the mass market.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BALLIF, Christophe, Franz-Josef HAUG, Mathieu BOCCARD, Pierre J. VERLINDEN, Giso HAHN, 2022. Status and perspectives of crystalline silicon photovoltaics in research and industry. In: Nature Reviews Materials. Nature Publishing Group. 2022, 7(8), pp. 597-616. eISSN 2058-8437. Available under: doi: 10.1038/s41578-022-00423-2
BibTex
@article{Ballif2022Statu-56845,
  year={2022},
  doi={10.1038/s41578-022-00423-2},
  title={Status and perspectives of crystalline silicon photovoltaics in research and industry},
  number={8},
  volume={7},
  journal={Nature Reviews Materials},
  pages={597--616},
  author={Ballif, Christophe and Haug, Franz-Josef and Boccard, Mathieu and Verlinden, Pierre J. and Hahn, Giso}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56845">
    <dc:contributor>Verlinden, Pierre J.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Verlinden, Pierre J.</dc:creator>
    <dc:contributor>Ballif, Christophe</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56845"/>
    <dc:creator>Boccard, Mathieu</dc:creator>
    <dc:contributor>Boccard, Mathieu</dc:contributor>
    <dc:contributor>Hahn, Giso</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-14T06:57:20Z</dc:date>
    <dcterms:title>Status and perspectives of crystalline silicon photovoltaics in research and industry</dcterms:title>
    <dc:creator>Ballif, Christophe</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Haug, Franz-Josef</dc:creator>
    <dc:contributor>Haug, Franz-Josef</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-14T06:57:20Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Hahn, Giso</dc:creator>
    <dcterms:abstract xml:lang="eng">Crystalline silicon (c-Si) photovoltaics has long been considered energy intensive and costly. Over the past decades, spectacular improvements along the manufacturing chain have made c-Si a low-cost source of electricity that can no longer be ignored. Over 125 GW of c-Si modules have been installed in 2020, 95% of the overall photovoltaic (PV) market, and over 700 GW has been cumulatively installed. There are some strong indications that c-Si photovoltaics could become the most important world electricity source by 2040–2050. In this Review, we survey the key changes related to materials and industrial processing of silicon PV components. At the wafer level, a strong reduction in polysilicon cost and the general implementation of diamond wire sawing has reduced the cost of monocrystalline wafers. In parallel, the concentration of impurities and electronic defects in the various types of wafers has been reduced, allowing for high efficiency in industrial devices. Improved cleanliness in production lines, increased tool automation and improved production technology and cell architectures all helped to increase the efficiency of mainstream modules. Efficiency gains at the cell level were accompanied by an increase in wafer size and by the introduction of advanced assembly techniques. These improvements have allowed a reduction of cell-to-module efficiency losses and will accelerate the yearly efficiency gain of mainstream modules. To conclude, we discuss what it will take for other PV technologies to compete with silicon on the mass market.</dcterms:abstract>
    <dcterms:issued>2022</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen