Publikation: Weak solutions to mean curvature flow respecting obstacles
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2014
Autor:innen
Rupflin, Melanie
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze. Scuola Normale Superiore, Pisa. 2014, XX(4), pp. 1429-1467. ISSN 0391-173X. eISSN 2036-2145
Zusammenfassung
We consider the problem of evolving hypersurfaces by mean curvature flow in the presence of obstacles, that is domains which the flow is not allowed to enter. In this paper, we treat the case of complete graphs and explain how the approach of M. Saez and the second author yields a global weak solution to the original problem for general initial data and onesided obstacles.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
RUPFLIN, Melanie, Oliver C. SCHNÜRER, 2014. Weak solutions to mean curvature flow respecting obstacles. In: Annali della Scuola Normale Superiore di Pisa - Classe di Scienze. Scuola Normale Superiore, Pisa. 2014, XX(4), pp. 1429-1467. ISSN 0391-173X. eISSN 2036-2145BibTex
@article{Rupflin2014solut-29391.2, year={2014}, title={Weak solutions to mean curvature flow respecting obstacles}, number={4}, volume={XX}, issn={0391-173X}, journal={Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages={1429--1467}, author={Rupflin, Melanie and Schnürer, Oliver C.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29391.2"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2014</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-04T13:56:17Z</dcterms:available> <dc:contributor>Schnürer, Oliver C.</dc:contributor> <dc:creator>Schnürer, Oliver C.</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">We consider the problem of evolving hypersurfaces by mean curvature flow in the presence of obstacles, that is domains which the flow is not allowed to enter. In this paper, we treat the case of complete graphs and explain how the approach of M. Saez and the second author yields a global weak solution to the original problem for general initial data and onesided obstacles.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Weak solutions to mean curvature flow respecting obstacles</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-04T13:56:17Z</dc:date> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Rupflin, Melanie</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/29391.2"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Rupflin, Melanie</dc:contributor> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt