Publikation:

Real-time PCR detection of Erwinia amylovoraon blossoms correlates with subsequent fire blight incidence

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Hinze, Malin
Köhl, Luise
Weißhaupt, Sonja
Schmid, Annette

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Plant Pathology. 2016, 65(3), pp. 462-469. ISSN 0032-0862. eISSN 1365-3059. Available under: doi: 10.1111/ppa.12429

Zusammenfassung

Fire blight is the most devastating bacterial disease of rosaceous plants. Forecasting fire blight infections is important to allow for countermeasures that reduce economic damage in pome fruit production. Current computerized forecasting models are solely based on physical factors such as temperature and moisture, but not on the actual presence of the pathogen Erwinia amylovora. Although the inoculum concentration is considered to be crucial for infection and disease outbreak, most current approaches used for identification of fire blight inoculum including morphological, biochemical, serological, and DNA-based methods are nonquantitative. Based on a real-time PCR approach previously published, an improved protocol to be used directly on whole bacteria in the field is described. The method allows for early detection and quantification of the pathogen prior to the occurrence of first symptoms. There is a clear correlation between bacterial abundance and subsequent disease development. However, in some cases, no disease symptoms could be observed despite a pathogen load of up to 3·4 × 106 cells per blossom. Integration of the amount of pathogen detected into refined prediction algorithms may allow for the improvement of applied forecasting models, finally permitting a better abatement of fire blight.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HINZE, Malin, Luise KÖHL, Stefan KUNZ, Sonja WEISSHAUPT, Michael ERNST, Annette SCHMID, Ralf T. VOEGELE, 2016. Real-time PCR detection of Erwinia amylovoraon blossoms correlates with subsequent fire blight incidence. In: Plant Pathology. 2016, 65(3), pp. 462-469. ISSN 0032-0862. eISSN 1365-3059. Available under: doi: 10.1111/ppa.12429
BibTex
@article{Hinze2016Realt-33975,
  year={2016},
  doi={10.1111/ppa.12429},
  title={Real-time PCR detection of Erwinia amylovoraon blossoms correlates with subsequent fire blight incidence},
  number={3},
  volume={65},
  issn={0032-0862},
  journal={Plant Pathology},
  pages={462--469},
  author={Hinze, Malin and Köhl, Luise and Kunz, Stefan and Weißhaupt, Sonja and Ernst, Michael and Schmid, Annette and Voegele, Ralf T.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33975">
    <dc:contributor>Ernst, Michael</dc:contributor>
    <dc:creator>Kunz, Stefan</dc:creator>
    <dc:creator>Schmid, Annette</dc:creator>
    <dcterms:title>Real-time PCR detection of Erwinia amylovoraon blossoms correlates with subsequent fire blight incidence</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33975"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Weißhaupt, Sonja</dc:creator>
    <dc:contributor>Schmid, Annette</dc:contributor>
    <dcterms:abstract xml:lang="eng">Fire blight is the most devastating bacterial disease of rosaceous plants. Forecasting fire blight infections is important to allow for countermeasures that reduce economic damage in pome fruit production. Current computerized forecasting models are solely based on physical factors such as temperature and moisture, but not on the actual presence of the pathogen Erwinia amylovora. Although the inoculum concentration is considered to be crucial for infection and disease outbreak, most current approaches used for identification of fire blight inoculum including morphological, biochemical, serological, and DNA-based methods are nonquantitative. Based on a real-time PCR approach previously published, an improved protocol to be used directly on whole bacteria in the field is described. The method allows for early detection and quantification of the pathogen prior to the occurrence of first symptoms. There is a clear correlation between bacterial abundance and subsequent disease development. However, in some cases, no disease symptoms could be observed despite a pathogen load of up to 3·4 × 106 cells per blossom. Integration of the amount of pathogen detected into refined prediction algorithms may allow for the improvement of applied forecasting models, finally permitting a better abatement of fire blight.</dcterms:abstract>
    <dcterms:issued>2016</dcterms:issued>
    <dc:creator>Hinze, Malin</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-05-18T08:48:36Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Weißhaupt, Sonja</dc:contributor>
    <dc:creator>Voegele, Ralf T.</dc:creator>
    <dc:contributor>Kunz, Stefan</dc:contributor>
    <dc:contributor>Köhl, Luise</dc:contributor>
    <dc:creator>Köhl, Luise</dc:creator>
    <dc:creator>Ernst, Michael</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-05-18T08:48:36Z</dc:date>
    <dc:contributor>Voegele, Ralf T.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Hinze, Malin</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen