Publikation: Plasticity in Collective Decision-Making for Robots : Creating Global Reference Frames, Detecting Dynamic Environments, and Preventing Lock-ins
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Swarm robots operate as autonomous agents and a swarm as a whole gets autonomous by its capability of collective decision-making. Despite intensive research on models of collective decision-making, the implementation in multi-robot systems is still challenging. Here, we advance the state of the art by introducing more plasticity to the decision-making process and by increasing the scenario difficulty. Most studies on large-scale multi-robot decision-making are limited to one instance of an iterated exploration-dissemination phase followed by successful and permanent convergence. We investigate a dynamic environment that requires constant collective monitoring of option qualities. Once a significant change in qualities is detected by the swarm, it has to collectively reconsider its previous decision accordingly. This is only possible by preventing lock-ins, a global consensus state of no return (i.e., a dominant majority of robots prevents the swarm from switching to another, possibly better option). In addition, we introduce a scenario of increased difficulty as the robots must locate themselves to assess the quality of an option. Using local communication, swarm robots propagate hop-count information throughout the swarm to form a global reference frame. We successfully validate our implementation in many swarm robot experiments concerning robustness to disruptions of the reference frame, scalability, and adaptivity to a dynamic environment.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SOORATI, Mohammad Divband, Maximilian KROME, Marco MORA-MENDOZA, Javad GHOFRANI, Heiko HAMANN, 2019. Plasticity in Collective Decision-Making for Robots : Creating Global Reference Frames, Detecting Dynamic Environments, and Preventing Lock-ins. IEEE/RSJ International Conference on Intelligent Robots and Systems 2019 (IROS ’19). Macau, China, 3. Nov. 2019 - 8. Nov. 2019. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ: IEEE, 2019, pp. 4100-4105. ISSN 2153-0858. eISSN 2153-0866. ISBN 978-1-72814-004-9. Available under: doi: 10.1109/IROS40897.2019.8967777BibTex
@inproceedings{Soorati2019Plast-59752, year={2019}, doi={10.1109/IROS40897.2019.8967777}, title={Plasticity in Collective Decision-Making for Robots : Creating Global Reference Frames, Detecting Dynamic Environments, and Preventing Lock-ins}, isbn={978-1-72814-004-9}, issn={2153-0858}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)}, pages={4100--4105}, author={Soorati, Mohammad Divband and Krome, Maximilian and Mora-Mendoza, Marco and Ghofrani, Javad and Hamann, Heiko} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59752"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">Swarm robots operate as autonomous agents and a swarm as a whole gets autonomous by its capability of collective decision-making. Despite intensive research on models of collective decision-making, the implementation in multi-robot systems is still challenging. Here, we advance the state of the art by introducing more plasticity to the decision-making process and by increasing the scenario difficulty. Most studies on large-scale multi-robot decision-making are limited to one instance of an iterated exploration-dissemination phase followed by successful and permanent convergence. We investigate a dynamic environment that requires constant collective monitoring of option qualities. Once a significant change in qualities is detected by the swarm, it has to collectively reconsider its previous decision accordingly. This is only possible by preventing lock-ins, a global consensus state of no return (i.e., a dominant majority of robots prevents the swarm from switching to another, possibly better option). In addition, we introduce a scenario of increased difficulty as the robots must locate themselves to assess the quality of an option. Using local communication, swarm robots propagate hop-count information throughout the swarm to form a global reference frame. We successfully validate our implementation in many swarm robot experiments concerning robustness to disruptions of the reference frame, scalability, and adaptivity to a dynamic environment.</dcterms:abstract> <dc:contributor>Soorati, Mohammad Divband</dc:contributor> <dc:creator>Ghofrani, Javad</dc:creator> <dc:creator>Krome, Maximilian</dc:creator> <dc:contributor>Krome, Maximilian</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-17T12:52:43Z</dcterms:available> <dc:creator>Mora-Mendoza, Marco</dc:creator> <dc:contributor>Mora-Mendoza, Marco</dc:contributor> <dc:contributor>Ghofrani, Javad</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Hamann, Heiko</dc:creator> <dc:creator>Soorati, Mohammad Divband</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-17T12:52:43Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59752"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2019</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Plasticity in Collective Decision-Making for Robots : Creating Global Reference Frames, Detecting Dynamic Environments, and Preventing Lock-ins</dcterms:title> <dc:contributor>Hamann, Heiko</dc:contributor> </rdf:Description> </rdf:RDF>