Publikation:

Plasticity in Collective Decision-Making for Robots : Creating Global Reference Frames, Detecting Dynamic Environments, and Preventing Lock-ins

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Soorati, Mohammad Divband
Krome, Maximilian
Mora-Mendoza, Marco
Ghofrani, Javad

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ: IEEE, 2019, pp. 4100-4105. ISSN 2153-0858. eISSN 2153-0866. ISBN 978-1-72814-004-9. Available under: doi: 10.1109/IROS40897.2019.8967777

Zusammenfassung

Swarm robots operate as autonomous agents and a swarm as a whole gets autonomous by its capability of collective decision-making. Despite intensive research on models of collective decision-making, the implementation in multi-robot systems is still challenging. Here, we advance the state of the art by introducing more plasticity to the decision-making process and by increasing the scenario difficulty. Most studies on large-scale multi-robot decision-making are limited to one instance of an iterated exploration-dissemination phase followed by successful and permanent convergence. We investigate a dynamic environment that requires constant collective monitoring of option qualities. Once a significant change in qualities is detected by the swarm, it has to collectively reconsider its previous decision accordingly. This is only possible by preventing lock-ins, a global consensus state of no return (i.e., a dominant majority of robots prevents the swarm from switching to another, possibly better option). In addition, we introduce a scenario of increased difficulty as the robots must locate themselves to assess the quality of an option. Using local communication, swarm robots propagate hop-count information throughout the swarm to form a global reference frame. We successfully validate our implementation in many swarm robot experiments concerning robustness to disruptions of the reference frame, scalability, and adaptivity to a dynamic environment.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

IEEE/RSJ International Conference on Intelligent Robots and Systems 2019 (IROS ’19), 3. Nov. 2019 - 8. Nov. 2019, Macau, China
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SOORATI, Mohammad Divband, Maximilian KROME, Marco MORA-MENDOZA, Javad GHOFRANI, Heiko HAMANN, 2019. Plasticity in Collective Decision-Making for Robots : Creating Global Reference Frames, Detecting Dynamic Environments, and Preventing Lock-ins. IEEE/RSJ International Conference on Intelligent Robots and Systems 2019 (IROS ’19). Macau, China, 3. Nov. 2019 - 8. Nov. 2019. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ: IEEE, 2019, pp. 4100-4105. ISSN 2153-0858. eISSN 2153-0866. ISBN 978-1-72814-004-9. Available under: doi: 10.1109/IROS40897.2019.8967777
BibTex
@inproceedings{Soorati2019Plast-59752,
  year={2019},
  doi={10.1109/IROS40897.2019.8967777},
  title={Plasticity in Collective Decision-Making for Robots : Creating Global Reference Frames, Detecting Dynamic Environments, and Preventing Lock-ins},
  isbn={978-1-72814-004-9},
  issn={2153-0858},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
  pages={4100--4105},
  author={Soorati, Mohammad Divband and Krome, Maximilian and Mora-Mendoza, Marco and Ghofrani, Javad and Hamann, Heiko}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59752">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Swarm robots operate as autonomous agents and a swarm as a whole gets autonomous by its capability of collective decision-making. Despite intensive research on models of collective decision-making, the implementation in multi-robot systems is still challenging. Here, we advance the state of the art by introducing more plasticity to the decision-making process and by increasing the scenario difficulty. Most studies on large-scale multi-robot decision-making are limited to one instance of an iterated exploration-dissemination phase followed by successful and permanent convergence. We investigate a dynamic environment that requires constant collective monitoring of option qualities. Once a significant change in qualities is detected by the swarm, it has to collectively reconsider its previous decision accordingly. This is only possible by preventing lock-ins, a global consensus state of no return (i.e., a dominant majority of robots prevents the swarm from switching to another, possibly better option). In addition, we introduce a scenario of increased difficulty as the robots must locate themselves to assess the quality of an option. Using local communication, swarm robots propagate hop-count information throughout the swarm to form a global reference frame. We successfully validate our implementation in many swarm robot experiments concerning robustness to disruptions of the reference frame, scalability, and adaptivity to a dynamic environment.</dcterms:abstract>
    <dc:contributor>Soorati, Mohammad Divband</dc:contributor>
    <dc:creator>Ghofrani, Javad</dc:creator>
    <dc:creator>Krome, Maximilian</dc:creator>
    <dc:contributor>Krome, Maximilian</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-17T12:52:43Z</dcterms:available>
    <dc:creator>Mora-Mendoza, Marco</dc:creator>
    <dc:contributor>Mora-Mendoza, Marco</dc:contributor>
    <dc:contributor>Ghofrani, Javad</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dc:creator>Soorati, Mohammad Divband</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-17T12:52:43Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59752"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2019</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Plasticity in Collective Decision-Making for Robots : Creating Global Reference Frames, Detecting Dynamic Environments, and Preventing Lock-ins</dcterms:title>
    <dc:contributor>Hamann, Heiko</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen