Publikation: Computing in macromolecular crystallography using a parallel architecture
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Despite advances in computer technology, computing in macromolecular crystallography keeps pace in its demand for CPU power. Improvements in CPU speed, together with advances in computing methods that depend on it, often translate into the possibility to solve structures that would otherwise require additional experiments. Programs for data reduction, molecular-replacement programs employing multidimensional searches on a grid in real, Patterson or reciprocal space, and phasing and refinement programs, currently have, among others, the highest requirements for CPU power. For these and other programs, speed-up of calculations as a result of parallel execution on multiprocessor computers is possible. This paper outlines the use of the OpenMP programming interface and reports its successful application for parallelization of ESSENS [Kleywegt & Jones (1997). Acta Cryst. D53, 179-185] and SHELXL [Schneider & Sheldrick (1997). Methods Enzymol. 277, 319-343]. Parallel computing, which is possible as a result of the inherent parallelism of crystallographic algorithms, extends the range of problems in macromolecular crystallography that programs can be applied to and can significantly reduce the time required for progressing from a data set to a refined model.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DIEDERICHS, Kay, 2000. Computing in macromolecular crystallography using a parallel architecture. In: Journal of Applied Crystallography. 2000, 33(4), pp. 1154-1161. ISSN 0021-8898. Available under: doi: 10.1107/S002188980000697XBibTex
@article{Diederichs2000Compu-8808, year={2000}, doi={10.1107/S002188980000697X}, title={Computing in macromolecular crystallography using a parallel architecture}, number={4}, volume={33}, issn={0021-8898}, journal={Journal of Applied Crystallography}, pages={1154--1161}, author={Diederichs, Kay} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/8808"> <dc:creator>Diederichs, Kay</dc:creator> <dc:format>application/pdf</dc:format> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:46:36Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/8808"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:46:36Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8808/1/Computing_in_macromolecular_crystallography_using_a_parallel_architecture.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:bibliographicCitation>First publ. in: Journal of Applied Crystallography 33 (2000), pp. 1154-1161</dcterms:bibliographicCitation> <dcterms:abstract xml:lang="eng">Despite advances in computer technology, computing in macromolecular crystallography keeps pace in its demand for CPU power. Improvements in CPU speed, together with advances in computing methods that depend on it, often translate into the possibility to solve structures that would otherwise require additional experiments. Programs for data reduction, molecular-replacement programs employing multidimensional searches on a grid in real, Patterson or reciprocal space, and phasing and refinement programs, currently have, among others, the highest requirements for CPU power. For these and other programs, speed-up of calculations as a result of parallel execution on multiprocessor computers is possible. This paper outlines the use of the OpenMP programming interface and reports its successful application for parallelization of ESSENS [Kleywegt & Jones (1997). Acta Cryst. D53, 179-185] and SHELXL [Schneider & Sheldrick (1997). Methods Enzymol. 277, 319-343]. Parallel computing, which is possible as a result of the inherent parallelism of crystallographic algorithms, extends the range of problems in macromolecular crystallography that programs can be applied to and can significantly reduce the time required for progressing from a data set to a refined model.</dcterms:abstract> <dc:language>eng</dc:language> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8808/1/Computing_in_macromolecular_crystallography_using_a_parallel_architecture.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2000</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Computing in macromolecular crystallography using a parallel architecture</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Diederichs, Kay</dc:contributor> </rdf:Description> </rdf:RDF>