Publikation:

Efficient Mining of Discriminative Molecular Fragments

Lade...
Vorschaubild

Dateien

DiBe05_EffMin_PDCS05.pdf
DiBe05_EffMin_PDCS05.pdfGröße: 139.71 KBDownloads: 191

Datum

2005

Autor:innen

Di Fatta, Giuseppe

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings, International Conference on Parallel and Distributed Computing and Systems 2005. 2005, pp. 619-625

Zusammenfassung

Frequent pattern discovery in structured data is receiving an increasing attention in many application areas of sciences. However, the computational complexity and the large amount of data to be explored often make the sequential algorithms unsuitable. In this context high performance distributed computing becomes a very interesting and promising approach. In this paper we present a parallel formulation of the frequent subgraph mining problem to discover interesting patterns in molecular compounds. The application is characterized by a highly irregular tree-structured computation. No estimation is available for task workloads, which show a power-law distribution in a wide range. The proposed approach allows dynamic resource aggregation and provides fault and latency tolerance. These features make the distributed application suitable for multi-domain heterogeneous environments, such as computational Grids. The distributed application has been evaluated on the wellknown National Cancer Institute s HIV-screening dataset.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Distributed computing, frequent subgraph mining, dynamic load balancing, biochemical databases

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DI FATTA, Giuseppe, Michael R. BERTHOLD, 2005. Efficient Mining of Discriminative Molecular Fragments. In: Proceedings, International Conference on Parallel and Distributed Computing and Systems 2005. 2005, pp. 619-625
BibTex
@inproceedings{DiFatta2005Effic-5781,
  year={2005},
  title={Efficient Mining of Discriminative Molecular Fragments},
  booktitle={Proceedings, International Conference on Parallel and Distributed Computing and Systems 2005},
  pages={619--625},
  author={Di Fatta, Giuseppe and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5781">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5781/1/DiBe05_EffMin_PDCS05.pdf"/>
    <dc:contributor>Di Fatta, Giuseppe</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5781/1/DiBe05_EffMin_PDCS05.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:04Z</dc:date>
    <dcterms:bibliographicCitation>First publ. in: Proceedings / International Conference on Parallel and Distributed Computing and Systems 2005  (2005), pp. 619-625</dcterms:bibliographicCitation>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5781"/>
    <dc:creator>Di Fatta, Giuseppe</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:format>application/pdf</dc:format>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2005</dcterms:issued>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Frequent pattern discovery in structured data is receiving an increasing attention in many application areas of sciences. However, the computational complexity and the large amount of data to be explored often make the sequential algorithms unsuitable. In this context high performance distributed computing becomes a very interesting and promising approach. In this paper we present a parallel formulation of the frequent subgraph mining problem to discover interesting patterns in molecular compounds. The application is characterized by a highly irregular tree-structured computation. No estimation is available for task workloads, which show a power-law distribution in a wide range. The proposed approach allows dynamic resource aggregation and provides fault and latency tolerance. These features make the distributed application suitable for multi-domain heterogeneous environments, such as computational Grids. The distributed application has been evaluated on the wellknown National Cancer Institute s HIV-screening dataset.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:04Z</dcterms:available>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dcterms:title>Efficient Mining of Discriminative Molecular Fragments</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen