Publikation:

Moment problem in infinitely many variables

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Ghasemi, Mehdi
Marshall, Murray

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Israel Journal of Mathematics. 2016, 212(2), pp. 989-1012. ISSN 0021-2172. eISSN 1565-8511. Available under: doi: 10.1007/s11856-016-1318-5

Zusammenfassung

The multivariate moment problem is investigated in the general context of the polynomial algebra R[x i | i ∈ Ω] in an arbitrary number of variables x i , i ∈ Ω. The results obtained are sharpest when the index set Ω is countable. Extensions of Haviland’s theorem [17] and Nussbaum’s theorem [34] are proved. Lasserre’s description of the support of the measure in terms of the non-negativity of the linear functional on a quadratic module of R[x i | i ∈ Ω] in [27] is shown to remain valid in this more general situation. The main tool used in the paper is an extension of the localization method developed by the third author in [30], [32] and [33]. Various results proved in [30], [32] and [33] are shown to continue to hold in this more general setting.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GHASEMI, Mehdi, Salma KUHLMANN, Murray MARSHALL, 2016. Moment problem in infinitely many variables. In: Israel Journal of Mathematics. 2016, 212(2), pp. 989-1012. ISSN 0021-2172. eISSN 1565-8511. Available under: doi: 10.1007/s11856-016-1318-5
BibTex
@article{Ghasemi2016-05-26Momen-34810,
  year={2016},
  doi={10.1007/s11856-016-1318-5},
  title={Moment problem in infinitely many variables},
  number={2},
  volume={212},
  issn={0021-2172},
  journal={Israel Journal of Mathematics},
  pages={989--1012},
  author={Ghasemi, Mehdi and Kuhlmann, Salma and Marshall, Murray}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/34810">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2016-05-26</dcterms:issued>
    <dc:contributor>Ghasemi, Mehdi</dc:contributor>
    <dc:creator>Ghasemi, Mehdi</dc:creator>
    <dcterms:abstract xml:lang="eng">The multivariate moment problem is investigated in the general context of the polynomial algebra R[x&lt;sub&gt; i&lt;/sub&gt; | i ∈ Ω] in an arbitrary number of variables x&lt;sub&gt; i&lt;/sub&gt; , i ∈ Ω. The results obtained are sharpest when the index set Ω is countable. Extensions of Haviland’s theorem [17] and Nussbaum’s theorem [34] are proved. Lasserre’s description of the support of the measure in terms of the non-negativity of the linear functional on a quadratic module of R[x&lt;sub&gt; i&lt;/sub&gt; | i ∈ Ω] in [27] is shown to remain valid in this more general situation. The main tool used in the paper is an extension of the localization method developed by the third author in [30], [32] and [33]. Various results proved in [30], [32] and [33] are shown to continue to hold in this more general setting.</dcterms:abstract>
    <dc:creator>Kuhlmann, Salma</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-07-15T12:45:06Z</dcterms:available>
    <dc:contributor>Marshall, Murray</dc:contributor>
    <dcterms:title>Moment problem in infinitely many variables</dcterms:title>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Kuhlmann, Salma</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/34810"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-07-15T12:45:06Z</dc:date>
    <dc:creator>Marshall, Murray</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen