Publikation:

Bidimensional ensemble empirical mode decomposition of functional biomedical images taken during a contour integration task

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Autor:innen

Al-Baddai, Saad
Al-Subari, Karima
Tomé, Augusto M.
Volberg, Gregor
Hammwöhner, Rainer
Lang, Elmar W.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Biomedical Signal Processing and Control. 2014, 13, pp. 218-236. ISSN 1746-8094. eISSN 1746-8108. Available under: doi: 10.1016/j.bspc.2014.04.011

Zusammenfassung

In cognitive neuroscience, extracting characteristic textures and features from functional imaging modalities which could be useful in identifying particular cognitive states across different conditions is still an important field of study. This paper explores the potential of two-dimensional ensemble empirical mode decomposition (2DEEMD) to extract such textures, so-called bidimensional intrinsic mode functions (BIMFs), of functional biomedical images, especially functional magnetic resonance images (fMRI) taken while performing a contour integration task. To identify most informative textures, i.e. BIMFs, a support vector machine (SVM) as well as a random forest (RF) classifier is trained for two different stimulus/response conditions. Classification performance is used to estimate the discriminative power of extracted BIMFs. The latter are then analyzed according to their spatial distribution of brain activations related with contour integration. Results distinctly show the participation of frontal brain areas in contour integration. Employing features generated from textures represented by BIMFs exhibit superior classification performance when compared with a canonical general linear model (GLM) analysis employing statistical parametric mapping (SPM).

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690AL-BADDAI, Saad, Karima AL-SUBARI, Augusto M. TOMÉ, Gregor VOLBERG, Simon HANSLMAYR, Rainer HAMMWÖHNER, Elmar W. LANG, 2014. Bidimensional ensemble empirical mode decomposition of functional biomedical images taken during a contour integration task. In: Biomedical Signal Processing and Control. 2014, 13, pp. 218-236. ISSN 1746-8094. eISSN 1746-8108. Available under: doi: 10.1016/j.bspc.2014.04.011
BibTex
@article{AlBaddai2014Bidim-29347,
  year={2014},
  doi={10.1016/j.bspc.2014.04.011},
  title={Bidimensional ensemble empirical mode decomposition of functional biomedical images taken during a contour integration task},
  volume={13},
  issn={1746-8094},
  journal={Biomedical Signal Processing and Control},
  pages={218--236},
  author={Al-Baddai, Saad and Al-Subari, Karima and Tomé, Augusto M. and Volberg, Gregor and Hanslmayr, Simon and Hammwöhner, Rainer and Lang, Elmar W.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29347">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-27T12:22:45Z</dcterms:available>
    <dcterms:issued>2014</dcterms:issued>
    <dc:contributor>Hanslmayr, Simon</dc:contributor>
    <dc:creator>Hanslmayr, Simon</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-27T12:22:45Z</dc:date>
    <dc:creator>Hammwöhner, Rainer</dc:creator>
    <dc:contributor>Volberg, Gregor</dc:contributor>
    <dc:contributor>Al-Baddai, Saad</dc:contributor>
    <dcterms:title>Bidimensional ensemble empirical mode decomposition of functional biomedical images taken during a contour integration task</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:creator>Al-Baddai, Saad</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29347"/>
    <dc:creator>Volberg, Gregor</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Hammwöhner, Rainer</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Lang, Elmar W.</dc:creator>
    <dcterms:abstract xml:lang="eng">In cognitive neuroscience, extracting characteristic textures and features from functional imaging modalities which could be useful in identifying particular cognitive states across different conditions is still an important field of study. This paper explores the potential of two-dimensional ensemble empirical mode decomposition (2DEEMD) to extract such textures, so-called bidimensional intrinsic mode functions (BIMFs), of functional biomedical images, especially functional magnetic resonance images (fMRI) taken while performing a contour integration task. To identify most informative textures, i.e. BIMFs, a support vector machine (SVM) as well as a random forest (RF) classifier is trained for two different stimulus/response conditions. Classification performance is used to estimate the discriminative power of extracted BIMFs. The latter are then analyzed according to their spatial distribution of brain activations related with contour integration. Results distinctly show the participation of frontal brain areas in contour integration. Employing features generated from textures represented by BIMFs exhibit superior classification performance when compared with a canonical general linear model (GLM) analysis employing statistical parametric mapping (SPM).</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Al-Subari, Karima</dc:contributor>
    <dc:contributor>Tomé, Augusto M.</dc:contributor>
    <dc:contributor>Lang, Elmar W.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Al-Subari, Karima</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Tomé, Augusto M.</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen