Publikation:

The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Péron, Guillaume
Fleming, Christen H.
Duriez, Olivier
Fluhr, Julie
Itty, Christian
Lambertucci, Sergio
Shepard, Emily L. C.
Calabrese, Justin M.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Applied Ecology. British Ecological Society. 2017, 54(6), pp. 1895-1906. ISSN 0021-8901. eISSN 1365-2664. Available under: doi: 10.1111/1365-2664.12909

Zusammenfassung

  1. Collisions of large soaring raptors with wind turbines and other infrastructures represent a growing conservation concern. We describe a way to leverage knowledge about raptor soaring behaviour to forecast the probability that raptors fly in the rotor‐swept zone. Soaring raptors are theoretically expected to select energy sources (uplift) optimally, making their flight height dependent on uplift conditions. This approach can be used to forecast collision hazard when planning or operating wind farms. Empirical investigations of the factors influencing flight height have, however, so far been hindered by observation error.
    2. We propose a two‐pronged approach. First, we fitted state‐space models to z‐axis GPS tracking data to filter heavy‐tailed observation error and estimate the relationship between vertical movement parameters and weather variables describing the energy landscape (thermal and orographic uplift potential). Second, we fitted a mechanistic model of flight height above ground based on aerodynamics and resource selection theories. The approach was replicated for five GPS‐tracked Andean condors Vultur gryphus, eight griffon vultures Gyps fulvus, and six golden eagles Aquila chrysaetos.
    3. In all individuals, movement parameters correlated with thermal uplift potential in the expected direction. In all species, collision hazard was lowest for high thermal uplift potential values. Species specificities in the presence of a peak in collision hazard for medium values of thermal uplift potential could be explained by differences in wing loading and aspect ratio.
    4. Synthesis and applications. Our fitted models convert weather data (thermal uplift potential) into a prediction of collision hazard (probability to fly in the rotor‐swept zone), making it possible to prioritize different wind development projects with respect to the relative hazard they would pose to raptors. However, our model should be combined with post‐construction monitoring to document, and eventually account for turbine avoidance behaviours in collision rate predictions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

3D, continuous‐time, flight height, human–wildlife conflict, movement ecology, raptor, state‐space models, wind power, wind turbines, z‐axis GPS tracking data

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PÉRON, Guillaume, Christen H. FLEMING, Olivier DURIEZ, Julie FLUHR, Christian ITTY, Sergio LAMBERTUCCI, Kamran SAFI, Emily L. C. SHEPARD, Justin M. CALABRESE, 2017. The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor. In: Journal of Applied Ecology. British Ecological Society. 2017, 54(6), pp. 1895-1906. ISSN 0021-8901. eISSN 1365-2664. Available under: doi: 10.1111/1365-2664.12909
BibTex
@article{Peron2017energ-52329,
  year={2017},
  doi={10.1111/1365-2664.12909},
  title={The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor},
  number={6},
  volume={54},
  issn={0021-8901},
  journal={Journal of Applied Ecology},
  pages={1895--1906},
  author={Péron, Guillaume and Fleming, Christen H. and Duriez, Olivier and Fluhr, Julie and Itty, Christian and Lambertucci, Sergio and Safi, Kamran and Shepard, Emily L. C. and Calabrese, Justin M.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52329">
    <dc:creator>Itty, Christian</dc:creator>
    <dc:contributor>Lambertucci, Sergio</dc:contributor>
    <dc:contributor>Péron, Guillaume</dc:contributor>
    <dc:creator>Safi, Kamran</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Calabrese, Justin M.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Fluhr, Julie</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-08T13:17:38Z</dcterms:available>
    <dc:creator>Calabrese, Justin M.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-08T13:17:38Z</dc:date>
    <dc:creator>Fleming, Christen H.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Itty, Christian</dc:contributor>
    <dcterms:abstract xml:lang="eng">1. Collisions of large soaring raptors with wind turbines and other infrastructures represent a growing conservation concern. We describe a way to leverage knowledge about raptor soaring behaviour to forecast the probability that raptors fly in the rotor‐swept zone. Soaring raptors are theoretically expected to select energy sources (uplift) optimally, making their flight height dependent on uplift conditions. This approach can be used to forecast collision hazard when planning or operating wind farms. Empirical investigations of the factors influencing flight height have, however, so far been hindered by observation error.&lt;br /&gt;2. We propose a two‐pronged approach. First, we fitted state‐space models to z‐axis GPS tracking data to filter heavy‐tailed observation error and estimate the relationship between vertical movement parameters and weather variables describing the energy landscape (thermal and orographic uplift potential). Second, we fitted a mechanistic model of flight height above ground based on aerodynamics and resource selection theories. The approach was replicated for five GPS‐tracked Andean condors Vultur gryphus, eight griffon vultures Gyps fulvus, and six golden eagles Aquila chrysaetos.&lt;br /&gt;3. In all individuals, movement parameters correlated with thermal uplift potential in the expected direction. In all species, collision hazard was lowest for high thermal uplift potential values. Species specificities in the presence of a peak in collision hazard for medium values of thermal uplift potential could be explained by differences in wing loading and aspect ratio.&lt;br /&gt;4. Synthesis and applications. Our fitted models convert weather data (thermal uplift potential) into a prediction of collision hazard (probability to fly in the rotor‐swept zone), making it possible to prioritize different wind development projects with respect to the relative hazard they would pose to raptors. However, our model should be combined with post‐construction monitoring to document, and eventually account for turbine avoidance behaviours in collision rate predictions.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:contributor>Safi, Kamran</dc:contributor>
    <dc:creator>Shepard, Emily L. C.</dc:creator>
    <dc:creator>Fluhr, Julie</dc:creator>
    <dcterms:issued>2017</dcterms:issued>
    <dc:creator>Duriez, Olivier</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Péron, Guillaume</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Fleming, Christen H.</dc:contributor>
    <dc:contributor>Duriez, Olivier</dc:contributor>
    <dcterms:title>The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor</dcterms:title>
    <dc:creator>Lambertucci, Sergio</dc:creator>
    <dc:contributor>Shepard, Emily L. C.</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52329"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen