Publikation:

Detecting smooth changes in locally stationary processes

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2013

Autor:innen

Dette, Holger

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In a wide range of applications, the stochastic properties of the observed time series change over time. It is often realistic to assume that the properties are approximately the same over short time periods and then gradually start to vary. This behaviour is well modelled by locally stationary processes. In this paper, we investigate the question how to estimate time spans where the stochastic features of a locally stationary time series are the same. We set up a general method which allows to deal with a wide variety of features including the mean, covariances, higher moments and the distribution of the time series under consideration. In the theoretical part of the paper, we derive the asymptotic properties of our estimation method. In addition, we examine its finite sample performance by means of a simulation study and illustrate the methodology by an application to financial data.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690VOGT, Michael, Holger DETTE, 2013. Detecting smooth changes in locally stationary processes
BibTex
@unpublished{Vogt2013Detec-26413,
  year={2013},
  title={Detecting smooth changes in locally stationary processes},
  author={Vogt, Michael and Dette, Holger}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26413">
    <dc:creator>Dette, Holger</dc:creator>
    <dcterms:abstract xml:lang="eng">In a wide range of applications, the stochastic properties of the observed time series change over time. It is often realistic to assume that the properties are approximately the same over short time periods and then gradually start to vary. This behaviour is well modelled by locally stationary processes. In this paper, we investigate the question how to estimate time spans where the stochastic features of a locally stationary time series are the same. We set up a general method which allows to deal with a wide variety of features including the mean, covariances, higher moments and the distribution of the time series under consideration. In the theoretical part of the paper, we derive the asymptotic properties of our estimation method. In addition, we examine its finite sample performance by means of a simulation study and illustrate the methodology by an application to financial data.</dcterms:abstract>
    <dcterms:issued>2013</dcterms:issued>
    <dc:contributor>Dette, Holger</dc:contributor>
    <dc:contributor>Vogt, Michael</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26413"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-24T09:58:39Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-24T09:58:39Z</dc:date>
    <dc:creator>Vogt, Michael</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Detecting smooth changes in locally stationary processes</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen