Publikation:

The orthogonal µ-invariant of a quaternion algebra

Lade...
Vorschaubild

Dateien

becher.pdf
becher.pdfGröße: 142.02 KBDownloads: 389

Datum

2010

Autor:innen

Mahmoudi, Mohammad G.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Bulletin of the Belgian Mathematical Society - Simon Stevin. 2010, 17(1), pp. 181-192

Zusammenfassung

In quadratic form theory over fields, a much studied field invariant is the u-invariant, defined as the supremum over the dimensions of anisotropic quadratic forms over the field. We investigate the corresponding notions of u-invariant for hermitian and for skew-hermitian forms over a division algebra with involution, with a special focus on skew-hermitian forms over a quaternion algebra. Under certain conditions on the center of the quaternion algebra, we obtain sharp bounds for this invariant.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Hermitian form, Isotropy, Dimension, Algebra with involution, U-invariant

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BECHER, Karim Johannes, Mohammad G. MAHMOUDI, 2010. The orthogonal µ-invariant of a quaternion algebra. In: Bulletin of the Belgian Mathematical Society - Simon Stevin. 2010, 17(1), pp. 181-192
BibTex
@article{Becher2010ortho-806,
  year={2010},
  title={The orthogonal µ-invariant of a quaternion algebra},
  url={https://projecteuclid.org/euclid.bbms/1267798507},
  number={1},
  volume={17},
  journal={Bulletin of the Belgian Mathematical Society - Simon Stevin},
  pages={181--192},
  author={Becher, Karim Johannes and Mahmoudi, Mohammad G.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/806">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/806/1/becher.pdf"/>
    <dcterms:bibliographicCitation>First publ. in: Bulletin of the Belgian Mathematical Society - Simon Stevin ; 17 (2010), 1. - S. 181-192</dcterms:bibliographicCitation>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">In quadratic form theory over fields, a much studied field invariant is the u-invariant, defined as the supremum over the dimensions of anisotropic quadratic forms over the field. We investigate the corresponding notions of u-invariant for hermitian and for skew-hermitian forms over a division algebra with involution, with a special focus on skew-hermitian forms over a quaternion algebra. Under certain conditions on the center of the quaternion algebra, we obtain sharp bounds for this invariant.</dcterms:abstract>
    <dc:creator>Mahmoudi, Mohammad G.</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Becher, Karim Johannes</dc:creator>
    <dc:contributor>Becher, Karim Johannes</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/806"/>
    <dcterms:title>The orthogonal µ-invariant of a quaternion algebra</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:57Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/806/1/becher.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Mahmoudi, Mohammad G.</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:57Z</dcterms:available>
    <dcterms:issued>2010</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2020-11-30

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen