Publikation:

Inverse Lightfield Rendering for Shape, Reflection and Natural Illumination

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 336978

Projekt

LIA - Light Field Imaging and Analysis
Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

PELILLO, Marcello, ed., Edwin HANCOCK, ed.. Energy Minimization Methods in Computer Vision and Pattern Recognition : 11th International Conference, EMMCVPR 2017, Venice, Italy, October 30 - November 1, 2017, revised selected papers. Cham: Springer, 2018, pp. 372-388. Lecture Notes in Computer Science. 10746. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-78198-3. Available under: doi: 10.1007/978-3-319-78199-0_25

Zusammenfassung

We propose an inverse rendering model for light fields to recover surface normals, depth, reflectance and natural illumination. Our setting is fully uncalibrated, with the reflectance modeled with a spatially-constant Blinn-Phong model and illumination as an environment map. While previous work makes strong assumptions in this difficult scenario, focusing solely on specific types of objects like faces or imposing very strong priors, our approach leverages only the light field structure, where a solution consistent across all subaperture views is sought. The optimization is based primarily on shading, which is sensitive to fine geometric details which are propagated to the initial coarse depth map. Despite the problem being inherently ill-posed, we achieve encouraging results on synthetic as well as real-world data.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

11th International Conference, EMMCVPR 2017, 30. Okt. 2017 - 1. Nov. 2017, Venice, Italy
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SULC, Antonin, Ole JOHANNSEN, Bastian GOLDLÜCKE, 2018. Inverse Lightfield Rendering for Shape, Reflection and Natural Illumination. 11th International Conference, EMMCVPR 2017. Venice, Italy, 30. Okt. 2017 - 1. Nov. 2017. In: PELILLO, Marcello, ed., Edwin HANCOCK, ed.. Energy Minimization Methods in Computer Vision and Pattern Recognition : 11th International Conference, EMMCVPR 2017, Venice, Italy, October 30 - November 1, 2017, revised selected papers. Cham: Springer, 2018, pp. 372-388. Lecture Notes in Computer Science. 10746. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-78198-3. Available under: doi: 10.1007/978-3-319-78199-0_25
BibTex
@inproceedings{Sulc2018Inver-42738,
  year={2018},
  doi={10.1007/978-3-319-78199-0_25},
  title={Inverse Lightfield Rendering for Shape, Reflection and Natural Illumination},
  number={10746},
  isbn={978-3-319-78198-3},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Energy Minimization Methods in Computer Vision and Pattern Recognition : 11th International Conference, EMMCVPR 2017, Venice, Italy, October 30 - November 1, 2017, revised selected papers},
  pages={372--388},
  editor={Pelillo, Marcello and Hancock, Edwin},
  author={Sulc, Antonin and Johannsen, Ole and Goldlücke, Bastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42738">
    <dcterms:title>Inverse Lightfield Rendering for Shape, Reflection and Natural Illumination</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-29T09:58:41Z</dcterms:available>
    <dc:contributor>Sulc, Antonin</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-29T09:58:41Z</dc:date>
    <dc:creator>Sulc, Antonin</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Johannsen, Ole</dc:creator>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2018</dcterms:issued>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42738"/>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dc:contributor>Johannsen, Ole</dc:contributor>
    <dcterms:abstract xml:lang="eng">We propose an inverse rendering model for light fields to recover surface normals, depth, reflectance and natural illumination. Our setting is fully uncalibrated, with the reflectance modeled with a spatially-constant Blinn-Phong model and illumination as an environment map. While previous work makes strong assumptions in this difficult scenario, focusing solely on specific types of objects like faces or imposing very strong priors, our approach leverages only the light field structure, where a solution consistent across all subaperture views is sought. The optimization is based primarily on shading, which is sensitive to fine geometric details which are propagated to the initial coarse depth map. Despite the problem being inherently ill-posed, we achieve encouraging results on synthetic as well as real-world data.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen