Publikation:

Matrix Methods for the Simplicial Bernstein Representation and for the Evaluation of Multivariate Polynomials

Lade...
Vorschaubild

Dateien

Titi_0-416554.pdf
Titi_0-416554.pdfGröße: 489.73 KBDownloads: 320

Datum

2017

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In this paper, multivariate polynomials in the Bernstein basis over a simplex (simplicial Bernstein representation) are considered. Two matrix methods for the computation of the polynomial coefficients with respect to the Bernstein basis, the so-called Bernstein coefficients, are presented. Also matrix methods for the calculation of the Bernstein coefficients over subsimplices generated by subdivision of the standard simplex are proposed and compared with the use of the de Casteljau algorithm. The evaluation of a multivariate polynomial in the power and in the Bernstein basis is considered as well. All the methods solely use matrix operations such as multiplication, transposition, and reshaping; some of them rely also on the bidiagonal factorization of the lower triangular Pascal matrix or the factorization of this matrix by a Toeplitz matrix. The latter one enables the use of the Fast Fourier Transform hereby reducing the amount of arithmetic operations.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Bernstein coefficient, simplicial Bernstein representation, range enclosure, simplicial subdivision, polynomial evaluation

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690TITI, Jihad, Jürgen GARLOFF, 2017. Matrix Methods for the Simplicial Bernstein Representation and for the Evaluation of Multivariate Polynomials
BibTex
@techreport{Titi2017Matri-39686,
  year={2017},
  series={Konstanzer Schriften in Mathematik},
  title={Matrix Methods for the Simplicial Bernstein Representation and for the Evaluation of Multivariate Polynomials},
  number={363},
  author={Titi, Jihad and Garloff, Jürgen},
  note={Wird erscheinen in: Journal of Applied Mathematics and Computation}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39686">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Titi, Jihad</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Garloff, Jürgen</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39686/1/Titi_0-416554.pdf"/>
    <dc:creator>Garloff, Jürgen</dc:creator>
    <dcterms:title>Matrix Methods for the Simplicial Bernstein Representation and for the Evaluation of Multivariate Polynomials</dcterms:title>
    <dc:contributor>Titi, Jihad</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-30T20:54:06Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-30T20:54:06Z</dcterms:available>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39686"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39686/1/Titi_0-416554.pdf"/>
    <dcterms:abstract xml:lang="eng">In this paper, multivariate polynomials in the Bernstein basis over a simplex (simplicial Bernstein representation) are considered. Two matrix methods for the computation of the polynomial coefficients with respect to the Bernstein basis, the so-called Bernstein coefficients, are presented. Also matrix methods for the calculation of the Bernstein coefficients over subsimplices generated by subdivision of the standard simplex are proposed and compared with the use of the de Casteljau algorithm. The evaluation of a multivariate polynomial in the power and in the Bernstein basis is considered as well. All the methods solely use matrix operations such as multiplication, transposition, and reshaping; some of them rely also on the bidiagonal factorization of the lower triangular Pascal matrix or the factorization of this matrix by a Toeplitz matrix. The latter one enables the use of the Fast Fourier Transform hereby reducing the amount of arithmetic operations.</dcterms:abstract>
    <dcterms:issued>2017</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Wird erscheinen in: Journal of Applied Mathematics and Computation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen