Publikation: Matrix Methods for the Simplicial Bernstein Representation and for the Evaluation of Multivariate Polynomials
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, multivariate polynomials in the Bernstein basis over a simplex (simplicial Bernstein representation) are considered. Two matrix methods for the computation of the polynomial coefficients with respect to the Bernstein basis, the so-called Bernstein coefficients, are presented. Also matrix methods for the calculation of the Bernstein coefficients over subsimplices generated by subdivision of the standard simplex are proposed and compared with the use of the de Casteljau algorithm. The evaluation of a multivariate polynomial in the power and in the Bernstein basis is considered as well. All the methods solely use matrix operations such as multiplication, transposition, and reshaping; some of them rely also on the bidiagonal factorization of the lower triangular Pascal matrix or the factorization of this matrix by a Toeplitz matrix. The latter one enables the use of the Fast Fourier Transform hereby reducing the amount of arithmetic operations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
TITI, Jihad, Jürgen GARLOFF, 2017. Matrix Methods for the Simplicial Bernstein Representation and for the Evaluation of Multivariate PolynomialsBibTex
@techreport{Titi2017Matri-39686, year={2017}, series={Konstanzer Schriften in Mathematik}, title={Matrix Methods for the Simplicial Bernstein Representation and for the Evaluation of Multivariate Polynomials}, number={363}, author={Titi, Jihad and Garloff, Jürgen}, note={Wird erscheinen in: Journal of Applied Mathematics and Computation} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39686"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Titi, Jihad</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Garloff, Jürgen</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39686/1/Titi_0-416554.pdf"/> <dc:creator>Garloff, Jürgen</dc:creator> <dcterms:title>Matrix Methods for the Simplicial Bernstein Representation and for the Evaluation of Multivariate Polynomials</dcterms:title> <dc:contributor>Titi, Jihad</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-30T20:54:06Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-30T20:54:06Z</dcterms:available> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39686"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39686/1/Titi_0-416554.pdf"/> <dcterms:abstract xml:lang="eng">In this paper, multivariate polynomials in the Bernstein basis over a simplex (simplicial Bernstein representation) are considered. Two matrix methods for the computation of the polynomial coefficients with respect to the Bernstein basis, the so-called Bernstein coefficients, are presented. Also matrix methods for the calculation of the Bernstein coefficients over subsimplices generated by subdivision of the standard simplex are proposed and compared with the use of the de Casteljau algorithm. The evaluation of a multivariate polynomial in the power and in the Bernstein basis is considered as well. All the methods solely use matrix operations such as multiplication, transposition, and reshaping; some of them rely also on the bidiagonal factorization of the lower triangular Pascal matrix or the factorization of this matrix by a Toeplitz matrix. The latter one enables the use of the Fast Fourier Transform hereby reducing the amount of arithmetic operations.</dcterms:abstract> <dcterms:issued>2017</dcterms:issued> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>