Publikation: Lost in Aggregation : Improving Event Analysis with Report‐Level Data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Most measures of social conflict processes are derived from primary and secondary source reports. In many cases, reports are used to create event‐level data sets by aggregating information from multiple, and often conflicting, reports to single event observations. We argue that this pre‐aggregation is less innocuous than it seems, costing applied researchers opportunities for improved inference. First, researchers cannot evaluate the consequences of different methods of report aggregation. Second, aggregation discards report‐level information (i.e., variation across reports) that is useful in addressing measurement error inherent in event data. Therefore, we advocate that data should be supplied and analyzed at the report level. We demonstrate the consequences of using aggregated event data as a predictor or outcome variable, and how analysis can be improved using report‐level information directly. These gains are demonstrated with simulated‐data experiments and in the analysis of real‐world data, using the newly available Mass Mobilization in Autocracies Database (MMAD).
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
COOK, Scott J., Nils B. WEIDMANN, 2019. Lost in Aggregation : Improving Event Analysis with Report‐Level Data. In: American Journal of Political Science : AJPS. 2019, 63(1), pp. 250-264. ISSN 0092-5853. eISSN 1540-5907. Available under: doi: 10.1111/ajps.12398BibTex
@article{Cook2019-01Aggre-44676, year={2019}, doi={10.1111/ajps.12398}, title={Lost in Aggregation : Improving Event Analysis with Report‐Level Data}, number={1}, volume={63}, issn={0092-5853}, journal={American Journal of Political Science : AJPS}, pages={250--264}, author={Cook, Scott J. and Weidmann, Nils B.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44676"> <dc:language>eng</dc:language> <dc:contributor>Cook, Scott J.</dc:contributor> <dc:creator>Cook, Scott J.</dc:creator> <dc:creator>Weidmann, Nils B.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44676"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T10:35:17Z</dcterms:available> <dcterms:title>Lost in Aggregation : Improving Event Analysis with Report‐Level Data</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T10:35:17Z</dc:date> <dcterms:abstract xml:lang="eng">Most measures of social conflict processes are derived from primary and secondary source reports. In many cases, reports are used to create event‐level data sets by aggregating information from multiple, and often conflicting, reports to single event observations. We argue that this pre‐aggregation is less innocuous than it seems, costing applied researchers opportunities for improved inference. First, researchers cannot evaluate the consequences of different methods of report aggregation. Second, aggregation discards report‐level information (i.e., variation across reports) that is useful in addressing measurement error inherent in event data. Therefore, we advocate that data should be supplied and analyzed at the report level. We demonstrate the consequences of using aggregated event data as a predictor or outcome variable, and how analysis can be improved using report‐level information directly. These gains are demonstrated with simulated‐data experiments and in the analysis of real‐world data, using the newly available Mass Mobilization in Autocracies Database (MMAD).</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2019-01</dcterms:issued> <dc:contributor>Weidmann, Nils B.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44676/1/Cook_2-qchauymf2z9a9.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44676/1/Cook_2-qchauymf2z9a9.pdf"/> </rdf:Description> </rdf:RDF>