Publikation: Towards Generating Realistic Geosocial Networks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The proliferation of location-based services and social networks have given rise to geosocial networks, which model not only the social interactions between users but also their spatial activities. Examples include traditional social networks extended with geo-annotated posts such as Twitter and Facebook, and networks such as Foursquare and Yelp that directly offer geosocial services. Despite the ubiquity of such networks in everyday life and the strong interest by the research community, a limited number of datasets are in fact publicly available. In view of this, we investigate the generation of realistic geosocial networks which find application in benchmarking and testing of analysis tasks, "what-if" scenarios and simulations. The contributions of our work are twofold. We first identify three types of synthetic geosocial networks which mimic the characteristics of real ones and second, we develop a prototype which combines graph and spatial generators, to construct such networks.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
AL RHMAN SARSOUR, Abed, Panagiotis BOUROS, Theodoros CHONDROGIANNIS, 2023. Towards Generating Realistic Geosocial Networks. LocalRec '23: 7th ACM SIGSPATIAL Workshop on Location-based Recommendations, Geosocial Networks and Geoadvertising. Hamburg, Germany, 13. Nov. 2023. In: Proceedings of the 7th ACM SIGSPATIAL Workshop on Location-based Recommendations, Geosocial Networks and Geoadvertising. New York, NY: ACM, 2023, S. 25-28. ISBN 979-8-4007-0358-4. Verfügbar unter: doi: 10.1145/3615896.3628340BibTex
@inproceedings{AlRhmanSarsour2023-11-13Towar-70274, year={2023}, doi={10.1145/3615896.3628340}, title={Towards Generating Realistic Geosocial Networks}, isbn={979-8-4007-0358-4}, publisher={ACM}, address={New York, NY}, booktitle={Proceedings of the 7th ACM SIGSPATIAL Workshop on Location-based Recommendations, Geosocial Networks and Geoadvertising}, pages={25--28}, author={Al Rhman Sarsour, Abed and Bouros, Panagiotis and Chondrogiannis, Theodoros} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70274"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Al Rhman Sarsour, Abed</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70274"/> <dc:contributor>Chondrogiannis, Theodoros</dc:contributor> <dcterms:issued>2023-11-13</dcterms:issued> <dcterms:title>Towards Generating Realistic Geosocial Networks</dcterms:title> <dc:contributor>Bouros, Panagiotis</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-28T07:06:44Z</dcterms:available> <dc:creator>Bouros, Panagiotis</dc:creator> <dcterms:abstract>The proliferation of location-based services and social networks have given rise to geosocial networks, which model not only the social interactions between users but also their spatial activities. Examples include traditional social networks extended with geo-annotated posts such as Twitter and Facebook, and networks such as Foursquare and Yelp that directly offer geosocial services. Despite the ubiquity of such networks in everyday life and the strong interest by the research community, a limited number of datasets are in fact publicly available. In view of this, we investigate the generation of realistic geosocial networks which find application in benchmarking and testing of analysis tasks, "what-if" scenarios and simulations. The contributions of our work are twofold. We first identify three types of synthetic geosocial networks which mimic the characteristics of real ones and second, we develop a prototype which combines graph and spatial generators, to construct such networks.</dcterms:abstract> <dc:language>eng</dc:language> <dc:creator>Chondrogiannis, Theodoros</dc:creator> <dc:contributor>Al Rhman Sarsour, Abed</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-28T07:06:44Z</dc:date> </rdf:Description> </rdf:RDF>