Publikation: Suppression of Quasiparticle Scattering Signals in Bilayer Graphene Due to Layer Polarization and Destructive Interference
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We study chemically gated bilayer graphene using scanning tunneling microscopy and spectroscopy complemented by tight-binding calculations. Gating is achieved by intercalating Cs between bilayer graphene and Ir(111), thereby shifting the conduction band minima below the chemical potential. Scattering between electronic states (both intraband and interband) is detected via quasiparticle interference. However, not all expected processes are visible in our experiment. We uncover two general effects causing this suppression: first, intercalation leads to an asymmetrical distribution of the states within the two layers, which significantly reduces the scanning tunneling spectroscopy signal of standing waves mainly present in the lower layer; second, forward scattering processes, connecting points on the constant energy contours with parallel velocities, do not produce pronounced standing waves due to destructive interference. We present a theory to describe the interference signal for a general n-band material.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JOLIE, Wouter, Jonathan LUX, Mathias PÖRTNER, Daniela DOMBROWSKI, Charlotte HERBIG, Timo KNISPEL, Sabina SIMON, Thomas MICHELY, Achim ROSCH, Carsten BUSSE, 2018. Suppression of Quasiparticle Scattering Signals in Bilayer Graphene Due to Layer Polarization and Destructive Interference. In: Physical Review Letters. 2018, 120(10), 106801. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.120.106801BibTex
@article{Jolie2018-03-09Suppr-42433, year={2018}, doi={10.1103/PhysRevLett.120.106801}, title={Suppression of Quasiparticle Scattering Signals in Bilayer Graphene Due to Layer Polarization and Destructive Interference}, number={10}, volume={120}, issn={0031-9007}, journal={Physical Review Letters}, author={Jolie, Wouter and Lux, Jonathan and Pörtner, Mathias and Dombrowski, Daniela and Herbig, Charlotte and Knispel, Timo and Simon, Sabina and Michely, Thomas and Rosch, Achim and Busse, Carsten}, note={Article Number: 106801} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42433"> <dc:contributor>Dombrowski, Daniela</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Simon, Sabina</dc:contributor> <dcterms:issued>2018-03-09</dcterms:issued> <dc:contributor>Herbig, Charlotte</dc:contributor> <dcterms:abstract xml:lang="eng">We study chemically gated bilayer graphene using scanning tunneling microscopy and spectroscopy complemented by tight-binding calculations. Gating is achieved by intercalating Cs between bilayer graphene and Ir(111), thereby shifting the conduction band minima below the chemical potential. Scattering between electronic states (both intraband and interband) is detected via quasiparticle interference. However, not all expected processes are visible in our experiment. We uncover two general effects causing this suppression: first, intercalation leads to an asymmetrical distribution of the states within the two layers, which significantly reduces the scanning tunneling spectroscopy signal of standing waves mainly present in the lower layer; second, forward scattering processes, connecting points on the constant energy contours with parallel velocities, do not produce pronounced standing waves due to destructive interference. We present a theory to describe the interference signal for a general n-band material.</dcterms:abstract> <dc:creator>Herbig, Charlotte</dc:creator> <dc:contributor>Pörtner, Mathias</dc:contributor> <dc:contributor>Busse, Carsten</dc:contributor> <dc:contributor>Jolie, Wouter</dc:contributor> <dc:creator>Lux, Jonathan</dc:creator> <dc:creator>Busse, Carsten</dc:creator> <dc:creator>Knispel, Timo</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Michely, Thomas</dc:creator> <dc:contributor>Michely, Thomas</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42433"/> <dc:creator>Simon, Sabina</dc:creator> <dcterms:title>Suppression of Quasiparticle Scattering Signals in Bilayer Graphene Due to Layer Polarization and Destructive Interference</dcterms:title> <dc:creator>Dombrowski, Daniela</dc:creator> <dc:creator>Pörtner, Mathias</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-28T09:42:44Z</dcterms:available> <dc:contributor>Knispel, Timo</dc:contributor> <dc:creator>Jolie, Wouter</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-28T09:42:44Z</dc:date> <dc:contributor>Rosch, Achim</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Rosch, Achim</dc:creator> <dc:contributor>Lux, Jonathan</dc:contributor> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>