Further applications of the Cauchon algorithm to rank determination and bidiagonal factorization
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Linear Algebra and its Applications. 2018, 545, pp. 240-255. ISSN 0024-3795. eISSN 1873-1856. Available under: doi: 10.1016/j.laa.2018.01.035
Zusammenfassung
For a class of matrices connected with Cauchon diagrams, Cauchon matrices, and the Cauchon algorithm, a method for determining the rank, and for checking a set of consecutive row (or column) vectors for linear independence is presented. Cauchon diagrams are also linked to the elementary bidiagonal factorization of a matrix and to certain types of rank conditions associated with submatrices called descending rank conditions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
ADM, Mohammad, Khawla AL MUHTASEB, Ayed Abedel GHANI, Shaun FALLAT, Jürgen GARLOFF, 2018. Further applications of the Cauchon algorithm to rank determination and bidiagonal factorization. In: Linear Algebra and its Applications. 2018, 545, pp. 240-255. ISSN 0024-3795. eISSN 1873-1856. Available under: doi: 10.1016/j.laa.2018.01.035BibTex
@article{Adm2018Furth-41260.2, year={2018}, doi={10.1016/j.laa.2018.01.035}, title={Further applications of the Cauchon algorithm to rank determination and bidiagonal factorization}, volume={545}, issn={0024-3795}, journal={Linear Algebra and its Applications}, pages={240--255}, author={Adm, Mohammad and Al Muhtaseb, Khawla and Ghani, Ayed Abedel and Fallat, Shaun and Garloff, Jürgen} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41260.2"> <dc:contributor>Adm, Mohammad</dc:contributor> <dc:contributor>Fallat, Shaun</dc:contributor> <dc:creator>Garloff, Jürgen</dc:creator> <dc:creator>Fallat, Shaun</dc:creator> <dcterms:issued>2018</dcterms:issued> <dc:contributor>Garloff, Jürgen</dc:contributor> <dcterms:abstract xml:lang="eng">For a class of matrices connected with Cauchon diagrams, Cauchon matrices, and the Cauchon algorithm, a method for determining the rank, and for checking a set of consecutive row (or column) vectors for linear independence is presented. Cauchon diagrams are also linked to the elementary bidiagonal factorization of a matrix and to certain types of rank conditions associated with submatrices called descending rank conditions.</dcterms:abstract> <dc:creator>Al Muhtaseb, Khawla</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Al Muhtaseb, Khawla</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41260.2"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-12T06:38:32Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Adm, Mohammad</dc:creator> <dc:creator>Ghani, Ayed Abedel</dc:creator> <dc:contributor>Ghani, Ayed Abedel</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Further applications of the Cauchon algorithm to rank determination and bidiagonal factorization</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-12T06:38:32Z</dc:date> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja