Publikation:

The differential rank of a differential-valued field

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Mathematische Zeitschrift. 2019, 292(3-4), pp. 1017-1049. ISSN 0025-5874. eISSN 1432-1823. Available under: doi: 10.1007/s00209-018-2132-z

Zusammenfassung

We develop a notion of (principal) differential rank for differential-valued fields, in analog of the exponential rank developed in Kuhlmann (The Fields Institute Monograph Series 12, 2000) and of the difference rank developed in Kuhlmann (Groups, Modules and Model Theory—Surveys and Recent Developments in Memory of Rdiger Gbel, pp 399–414, 2017). We give several characterizations of this rank. We then give a method to define a derivation on a field of generalized power series and use this method to show that any totally ordered set can be realized as the principal differential rank of a H-field.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Valuation, Differential field, Differential-valued field, H-field, Asymptotic couple, Generalized power series

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KUHLMANN, Salma, Gabriel LEHÉRICY, 2019. The differential rank of a differential-valued field. In: Mathematische Zeitschrift. 2019, 292(3-4), pp. 1017-1049. ISSN 0025-5874. eISSN 1432-1823. Available under: doi: 10.1007/s00209-018-2132-z
BibTex
@article{Kuhlmann2019diffe-40733.2,
  year={2019},
  doi={10.1007/s00209-018-2132-z},
  title={The differential rank of a differential-valued field},
  number={3-4},
  volume={292},
  issn={0025-5874},
  journal={Mathematische Zeitschrift},
  pages={1017--1049},
  author={Kuhlmann, Salma and Lehéricy, Gabriel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40733.2">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Lehéricy, Gabriel</dc:contributor>
    <dcterms:issued>2019</dcterms:issued>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-20T08:23:57Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40733.2"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Lehéricy, Gabriel</dc:creator>
    <dcterms:title>The differential rank of a differential-valued field</dcterms:title>
    <dc:contributor>Kuhlmann, Salma</dc:contributor>
    <dc:creator>Kuhlmann, Salma</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-20T08:23:57Z</dc:date>
    <dcterms:abstract xml:lang="eng">We develop a notion of (principal) differential rank for differential-valued fields, in analog of the exponential rank developed in Kuhlmann (The Fields Institute Monograph Series 12, 2000) and of the difference rank developed in Kuhlmann (Groups, Modules and Model Theory—Surveys and Recent Developments in Memory of Rdiger Gbel, pp 399–414, 2017). We give several characterizations of this rank. We then give a method to define a derivation on a field of generalized power series and use this method to show that any totally ordered set can be realized as the principal differential rank of a H-field.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2019-09-20 08:21:15
2017-11-27 14:52:10
* Ausgewählte Version