Publikation: Uncertainty Visualization for Crisis Management in Smart Grid Environments
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Visual analytics systems are in place within smart grid environments to alleviate crisis situations by allowing decision makers to perceive and understand the severity of a crisis situation. However, errors in measurements that are propagated due to various reasons (such as data transformations, errors in measurement devices etc.) can make the decision makers less confident in deriving information. Therefore, analysis and visualization of uncertainty within such data has become important. In this paper we utilize two uncertainty propagation techniques: sampling and Monte Carlo simulation, to propagate uncertainties inherent in power data within our smart grid environment, and compare their performance to best fit our use-case.We found that the Monte Carlo simulation methodis most suitable for measuring uncertainty in our application domain. Further, we identified most effective visual metaphors to communicate uncertainty to the crisis managers.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SENARATNE, Hansi, Sebastian MITTELSTÄDT, Christine JACOB, Tobias SCHRECK, 2014. Uncertainty Visualization for Crisis Management in Smart Grid Environments. GIScience 2014 : Eighth International Conference on Geographic Information Science. Vienna, 23. Sept. 2014 - 26. Sept. 2014. In: GIScience 2014 : Eighth International Conference on Geographic Information Science ; Workshop on Visually-Supported Reasoning with Uncertainty. 2014BibTex
@inproceedings{Senaratne2014Uncer-30246, year={2014}, title={Uncertainty Visualization for Crisis Management in Smart Grid Environments}, url={http://cognitivegiscience.psu.edu/uncertainty2014/papers/senaratne_smartgrid.pdf}, booktitle={GIScience 2014 : Eighth International Conference on Geographic Information Science ; Workshop on Visually-Supported Reasoning with Uncertainty}, author={Senaratne, Hansi and Mittelstädt, Sebastian and Jacob, Christine and Schreck, Tobias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30246"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Visual analytics systems are in place within smart grid environments to alleviate crisis situations by allowing decision makers to perceive and understand the severity of a crisis situation. However, errors in measurements that are propagated due to various reasons (such as data transformations, errors in measurement devices etc.) can make the decision makers less confident in deriving information. Therefore, analysis and visualization of uncertainty within such data has become important. In this paper we utilize two uncertainty propagation techniques: sampling and Monte Carlo simulation, to propagate uncertainties inherent in power data within our smart grid environment, and compare their performance to best fit our use-case.We found that the Monte Carlo simulation methodis most suitable for measuring uncertainty in our application domain. Further, we identified most effective visual metaphors to communicate uncertainty to the crisis managers.</dcterms:abstract> <dc:contributor>Jacob, Christine</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Senaratne, Hansi</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-12T14:54:10Z</dc:date> <dc:creator>Jacob, Christine</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Mittelstädt, Sebastian</dc:creator> <dc:contributor>Mittelstädt, Sebastian</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:creator>Schreck, Tobias</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-12T14:54:10Z</dcterms:available> <dcterms:title>Uncertainty Visualization for Crisis Management in Smart Grid Environments</dcterms:title> <dc:creator>Senaratne, Hansi</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30246"/> <dcterms:issued>2014</dcterms:issued> </rdf:Description> </rdf:RDF>