Publikation:

Hardy type derivations on fields of exponential logarithmic series

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2011

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Algebra. 2011, 345(1), pp. 171-189. ISSN 0021-8693. Available under: doi: 10.1016/j.jalgebra.2011.07.023

Zusammenfassung

We consider the valued field K : = R ( ( Γ ) ) () of formal series (with real coefficients and monomials in a totally ordered multiplicative group Γ). We investigate how to endow K () with a logarithm l, which satisfies some natural properties such as commuting with infinite products of monomials. We studied derivations on K () (Kuhlmann and Matusinski, in press). Here, we investigate compatibility conditions between the logarithm and the derivation, i.e. when the logarithmic derivative is the derivative of the logarithm. We analyze sufficient conditions on a given derivation to construct a compatible logarithm via integration of logarithmic derivatives. In Kuhlmann (2000), the first author described the exponential closure K EL () of ( K , l ) (). Here we show how to extend such a log-compatible derivation on K () to K EL ().

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Generalized series fields, Logarithm and exponential closure, Derivations, Valuations

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KUHLMANN, Salma, Mickael MATUSINSKI, 2011. Hardy type derivations on fields of exponential logarithmic series. In: Journal of Algebra. 2011, 345(1), pp. 171-189. ISSN 0021-8693. Available under: doi: 10.1016/j.jalgebra.2011.07.023
BibTex
@article{Kuhlmann2011Hardy-16745,
  year={2011},
  doi={10.1016/j.jalgebra.2011.07.023},
  title={Hardy type derivations on fields of exponential logarithmic series},
  number={1},
  volume={345},
  issn={0021-8693},
  journal={Journal of Algebra},
  pages={171--189},
  author={Kuhlmann, Salma and Matusinski, Mickael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/16745">
    <dc:contributor>Matusinski, Mickael</dc:contributor>
    <dc:creator>Kuhlmann, Salma</dc:creator>
    <dcterms:bibliographicCitation>Publ. in: Journal of Algebra ; 345 (2011), 1. - S. 171-189</dcterms:bibliographicCitation>
    <dc:contributor>Kuhlmann, Salma</dc:contributor>
    <dcterms:abstract xml:lang="eng">We consider the valued field K : = R ( ( Γ ) ) () of formal series (with real coefficients and monomials in a totally ordered multiplicative group Γ). We investigate how to endow K () with a logarithm l, which satisfies some natural properties such as commuting with infinite products of monomials. We studied derivations on K () (Kuhlmann and Matusinski, in press). Here, we investigate compatibility conditions between the logarithm and the derivation, i.e. when the logarithmic derivative is the derivative of the logarithm. We analyze sufficient conditions on a given derivation to construct a compatible logarithm via integration of logarithmic derivatives. In Kuhlmann (2000), the first author described the exponential closure K EL () of ( K , l ) (). Here we show how to extend such a log-compatible derivation on K () to K EL ().</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/16745"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Hardy type derivations on fields of exponential logarithmic series</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-16T10:23:47Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-16T10:23:47Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2011</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:creator>Matusinski, Mickael</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen